قسم الهندسة النووية

المزيد ...

حول قسم الهندسة النووية

تم إنشاء قسم الهندسة النووية كأحد أقسام كلية الهندسة عام 1974م وتم قبول أول دفعة في العام الدراسي 1977م كما شهد عام 1981م تخريج أول دفعة. ويهدف قسم الهندسة النووية وهو القسم الوحيد بالجامعات الليبية إلى إعداد الكفاءات العلمية المؤهلة والقادرة على استيعاب التطورات التي تحدث في مجال العلوم النووية المساهمة في إدخال أساليب التقنية النووية وتطويعها للاستخدامات السلمية في كافة المجالات ذات العلاقة.

شعب القسم: يضم القسم حالياً شعبتين هما:  شعبة الطاقة وتهتم باستخدامات المفاعلات النووية. وشعبة التطبيقات الإشعاعية وتهتم بتطبيقات الإشعاع النووي .

حقائق حول قسم الهندسة النووية

نفتخر بما نقدمه للمجتمع والعالم

9

المنشورات العلمية

12

هيئة التدريس

109

الطلبة

0

الخريجون

من يعمل بـقسم الهندسة النووية

يوجد بـقسم الهندسة النووية أكثر من 12 عضو هيئة تدريس

staff photo

د. كريمة محمد علي المصري

منشورات مختارة

بعض المنشورات التي تم نشرها في قسم الهندسة النووية

Automatic Detection and Quantification of Abdominal Aortic Calcification in Dual Energy X-Ray Absorptiometry

Cardiovascular disease (CVD) is a major cause of mortality and the main cause of morbidity worldwide. CVD may lead to heart attacks and strokes and most of these are caused by atherosclerosis; this is a medical condition in which the arteries become narrowed and hardened due to an excessive build-up of plaque on the inner artery wall. Arterial calcification and, in particular, abdominal aortic calcification (AAC) is a manifestation of atherosclerosis and a prognostic indicator of CVD. In this paper, a two-stage automatic method to detect and quantify the severity of AAC is described; it is based on the analysis of lateral vertebral fracture assessment (VFA) images. These images were obtained on a dual energy x-ray absorptiometry (DXA) scanner used in single energy mode. First, an active appearance model was used to segment the lumbar vertebrae L1-L4 and the aorta on VFA images; the segmentation of the aorta was based on its position with respect to the vertebrae. In the second stage, feature vectors representing calcified regions in the aorta were extracted to quantify the severity of AAC. The presence and severity of AAC was also determined using an established visual scoring system (AC24). The abdominal aorta was divided into four parts immediately anterior to each vertebra, and the severity of calcification in the anterior and posterior walls was graded separately for each part on a 0-3 scale. The results were summed to give a composite severity score ranging from 0 to 24. This severity score was classified as follows: mild AAC (score 0-4), moderate AAC (score 5-12) and severe AAC (score 12-24). Two classification algorithms (k-nearest neighbour and support vector machine) were trained and tested to assign the automatically extracted feature vectors into the three classes. There was good agreement between the automatic and visual AC24 methods and the accuracy of the automated technique relative to visual classification indicated that it is capable of identifying and quantifying AAC over a range of severity. arabic 30 English 163
Karima Mohamed Ali Elmasri, William Evans, Yulia Hicks(1-2016)
Publisher's website

Studying of Naturally Occurring Radioactive Materials (NORM) in Oilfield (A/100) South East of Libya

The huge volume of Naturally Occurring Radioactive Materials (NORM) wastes produced annually by the oil and gas industry in Libya deserves the attention of the national environmental protection authority, radioactive waste management and regulatory bodies. An investigation was carried out to find out the concentration of (NORMs) in evaporation ponds sludge in south eastern oilfield (A/100) of Libya. Twenty soil samples were collected from five evaporation ponds sludge. Activity concentrations of 226Ra, 232Th and 40K in soil generated during oil production operations were determined using a gamma spectroscopy system based on High Purity Germanium (HPGe) detector. Concentrations ranged from 83 to 1000 Bq kg–1 for 226Ra, 59 to 315 Bq kg–1 for 232Th and 109 to 304 Bq kg–1 for 40K. To evaluate the radiological effects, radium equivalent activity and external hazard are calculated. The magnitude of these results demonstrates the need of screening oil residues for their radionuclide content in order to decide about possibility of minimize the environmental impact of NORM and their final disposal. Disposal of NORM waste has to be in accordance with national regulations, environmental policy and international agreements and conventions. The researchers recommend limits for clearance and disposal, based on best international practice. arabic 18 English 82
Usama Elghawi (1-2021)
Publisher's website

Determination of Dose Rates from Natural Radionuclides in Porcelain Dental Materials

There are three main aims that make this study particularly important and interesting to radiometric studies. Firstly, it will provides information on the concentration composition of natural and the associated man-made radioactivity of imported dental porcelain materials to be used by most dental laboratories in Great Jamahiriya. Since these materials do not pass radiation inspection tests before their entry or use and there is a large variety of supply source of these dental materials to be used for all dental works on Libyan patients, anomalies can be identified easily. Secondly, the analysis of selective elemental abundance (U, Th, and K ) and dose rate calculations may be used to calculate effective dose rates to dental laboratory technicians and also to the patient who will be using these specific materials. This research project will provide the first results of such measurements and the corresponding average annual effective dose rates equivalent to the patients using these materials and also to the dental technician and doctors work in the various dental laboratories that make use of these materials in their daily work. A total number of 30 dental powder samples were collected from a number of dental laboratories around Tripoli area will be analyzed. In this research project, the results from this preliminary survey regarding Th, U and K elemental concentrations in a wide variety of dental materials by means of high-resolution X-ray spectrometry will be presented. Further results from these investigations concerning activity concentrations and the associated dose rates, effective dose and the committed dose due to the use of these materials are going to be calculated and compared with other published data elsewhereandrecommendationoftheirusewillbederivedaccordingly. arabic 10 English 74
Karima Mohamed Ali Elmasri, Nouri A. Droughi(9-2010)
Publisher's website