المستودع الرقمي لـقسم الهندسة المدنية

احصائيات قسم الهندسة المدنية

  • Icon missing? Request it here.
  • 4

    مقال في مؤتمر علمي

  • 30

    مقال في مجلة علمية

  • 0

    كتاب

  • 1

    فصل من كتاب

  • 1

    رسالة دكتوراة

  • 50

    رسالة ماجستير

  • 0

    مشروع تخرج بكالوريوس

  • 2

    تقرير علمي

  • 0

    عمل غير منشور

  • 0

    وثيقة

Structural Assessment of Reinforced Concrete Beams Incorporating Waste Plastic Straws

The behavior of reinforced concrete beams containing fibers made of waste plastic straws (WPSs) under the three point bending test is examined. The e ect of WPS fiber addition on the compressive and split tensile strength is reported. Four concrete mixes were prepared. The control mix PS-0 had a proportion of 1 cement: 1 sand: 2 coarse aggregate and a water cement ratio of 0.4. In the other three mixes PS-0.5, PS-1.5 and PS-3, 0%, 0.5%, 1.5% and 3% of WPS fiber (by volume) was added respectively. The results show that at 0.5% WPS, there is slight increase in compressive strength. However, beyond 0.5% addition, a decrease in compressive strength is observed. The split tensile strength shows a systematic increase with the addition of WPS fibers. The reinforced concrete beams containing WPS fibers show higher ductility as demonstrated by the larger ultimate tensile strain and ductility index (Du/Dy). There is a tendency to have more fine cracks with the presence of WPS fibers. arabic 9 English 76
Hakim S. Abdelgader(10-2020)
موقع المنشور

Impact response of novel layered two stage fibrous composite slabs with different support type

The performance of novel Layered Two Stage Fibrous Composite slabs (LTSFC) was pioneered under falling mass collisions using a combined experimental and numerical study. Such LTSFC slabs consist of three layers with and without the insertion of glass fibre mesh between the layers. LTSFC techniques were used to fabricate the composite slabs with three layers including 3%, 1.5%, and 3% of fibre content for the top, middle, and bottom layers respectively. Sixteen MLPAFC square slabs were cast with only short hooked end fibres and tested under falling mass collisions by amending two parameters namely the type of support (fixed and hinge) and support layout. Two distinct support layouts on two types of support were considered and tested with and without the glass fibre mesh between layers of LTSFC. A glass fibre mesh was introduced between the three layers to block crack growth propagation and absorb additional collision energy. The glass fibre mesh insertion between the layers and the LTSFC production technique were considered as novel modifications. A numerical study using Auto desk Fusion 360 was conducted and compared with experimental results. The numerical results showed fair agreement with the experimental test results. Based on the validated numerical models, collision energy and cracking pattern evolution were studied. The findings indicated that the glass fibre mesh insertion between the layers combined with steel fibres disrupted crack proliferation, thus exhibiting superior engrossed collision energy and postponing crack growth. Additionally, the engrossed collision energy at crack initiation and ultimate crack for the slabs with four sides fixed and hinged support were greater with respect to two opposite sides fixed and hinged support. Numerical values were in reasonable agreement with the experimental values in terms of collision energy and cracking patterns. arabic 13 English 81
Hakim S. Abdelgader(2-2021)
موقع المنشور

Impact performance of novel multi-layered prepacked aggregate fibrous composites under compression and bending

Multi-layered Prepacked aggregate fibrous composite (MLPAFC) is a new type of concrete, which is prepared in two subsequent stages of aggregate-fibre skeleton prepacking and cementitious grouting. In this study, ten MLPAFC mixtures were prepared in three subsequent layers incorporating different contents of four different types of steel fibres. Long and short hooked-end and crimped steel fibers were adopted with 3.0 and 1.5% dosages for the outer and interior layers, respectively. In-between the three MLPAFC layers, two layers of Glass Fiber Mesh (GFM) were inserted in five of the ten mixtures. The impact response of the MLPAFC mixtures was evaluated using two test methods. In the first, the ACI 544-2R repeated free-falling weight test was followed using disk specimens, while flexural free-falling weight on prism specimens was the second adopted impact test. Moreover, Weibull distribution was used to statistically analyse the discrepancies of the obtained experimental impact records. The impact tests results revealed that MLPAFC can absorb significantly high energy under falling weight impact due to its structure and the dual crack arresting activity of both steel fibers and GFM. The cracking number of impacts of MLPAFC cylindrical specimens without GFM was increased by approximately 530–870% compared reference specimens, while increment percentages reaching 1350% were recorded at failure stage. The impact resistance of MLPAFC prisms under flexural impact was noticeably improved, yet with lower percentages than cylindrical specimens. The insertion of intermediate GFMs let to additional developments in the impact strength of both cylindrical and prism specimens. arabic 14 English 97
Hakim S. Abdelgader (12-2020)
موقع المنشور

Assessing chloride induced deterioration in condition and safety of concrete structures in marine environments

Prediction of the present and future state of Reinforced Concrete (RC) structures suffering from chloride-induced corrosion is important if proper planning for inspection and maintenance is to be made. The majority of research studies have thus far focused on the diffusion process of chloride ions through the concrete cover, the time to corrosion initiation and on the prediction of the surface condition of the structure. However; practical evidence and theoretical analysis suggests that many structures can tolerate considerable corrosion damage without serious reduction to their load carrying capacity. Therefore, visual impression-based maintenance is not an optimum solution particularly when financial resources are limited. To support this notion, accurate models are needed to predict the deterioration rate of the structural load carrying capacity over time. This paper uses existing empirical RC deterioration models to predict the loss in the load carrying capacity of a typical RC T-beam using a reliability based approach. The approach takes into consideration the spatial variability of the deterioration parameters, thereby demonstrating the importance of its inclusion in any such analysis. arabic 13 English 97
Omran Kenshel(1-2009)
موقع المنشور

Experimental evaluation of the scale of fluctuation for spatial variability modelling of chloride induced reinforced concrete corrosion

This paper provides experimentally determined estimates of the scale of fluctuation of the principal variables employed in modeling chloride-induced corrosion for reinforced concrete; i.e., the surface chloride content (Cs) and apparent diffusion coefficient (Dapp). The estimation of the scale of fluctuation, θ, is based on the analysis of experimental data recorded on a bridge in South East Ireland prior to its extensive rehabilitation in 2007. In determining the scale of fluctuation the paper considers two commonly used methods; i.e., the maximum likelihood method and the autocorrelation curve-fitting method. The reliability of both methods is discussed. Introduction of the kriging statistical interpolation method is demonstrated to improve the reliability of the estimates of the scale of fluctuation. The results obtained from the analysis are compared with values in the literature proffered by other researchers. arabic 16 English 119
Omran Kenshel(1-2013)
موقع المنشور

CONCRETE MIX DESIGN USING SIMPLE EQUATIONS

The behaviour of concrete, whether fresh or hardened, depends basically on the behaviour of its components and the relationship between them, therefore, obtaining a concrete with certain properties depends fundamentally on the concrete mix design. Concrete mix design generally includes two main steps: 1-Selection of the main components suitable for the concrete (cement, aggregate, water, and additives); 2-Determination of more economical mix ratios to fulfil the workability, strength and efficiency requirements. Currently, there are many international methods locally approved for mix designs. They are all related to each other, they give relatively the same quantities of the mix components and they are all capable of providing a good concrete mix. It is important to consider that these methods give approximate quantities which should be checked by experimental mixes in order to obtain results suitable for the requirements of the local environment and local materials. The ACI and BS methods are the most commonly used. Both of these methods depend on graphs and standard tables derived from previous research experience and actual concrete production as well as studies of the properties of the materials used. This paper illustrates a new approach for concrete mix design named as: “Double Coating Method”, which is currently used in some research centers in the republic of Poland and was recently applied in the laboratories of the Civil Engineering Departments in the Universities of Tripoli and Benghazi in Libya. This paper describes experiment in which 24 mixtures were used to assess the usefulness of this technique for problem of proportioning concrete mixtures in general. arabic 5 English 37
Hakim S. Abdelgader (12-2020)
موقع المنشور

Impact response of two-layered grouted aggregate fibrous concrete composite under falling mass impact

Two-layered Grouted Aggregates Fibrous Concrete Composite (TGAFCC) is a new category concrete which became popular recently and attracted the attention of researchers globally. Recent studies indicated that TGAFCC has notable improvement in mechanical properties, which has been sufficiently documented. However, the impact behaviour of TGAFCC when combined with Glass Fibre Mesh (GFM) and Textile Fibre Mesh (TFM) is still unexplored. The research objective is to study the effect of GFM and TFM inser- tion in TGAFCC against the drop hammer impact. Twenty one TGAFCC mixtures were prepared and divided into two series; non-fibrous concrete and fibrous concrete. The combined action of GFM and TFM of various diameters were inserted between the two layers and tested experimentally against drop mass impact. Additionally, all fibrous specimens were reinforced with a constant 3% dosage of 5D hooked end fibre. All specimens were tested under repeated drop mass impact as per ACI Committee 544. The impacts number or number of blows till the first visible crack and failure, impact energy at the first vis- ible crack and failure, impact ductility index and cracking configuration were examined. Besides, Weibull distribution was used to examine the variations in the test results, where impact numbers were pre- sented using the reliability function. The research findings indicate that inserting GFM and TFM between the two layers combined with 5D hooked end steel fibres, provided high impact resistance, higher absorbed energy and prolonged failure duration. Increasing the diameters of the GFM and TFM insertions, in both non-fibrous and fibrous concrete resulted in increasing the impact numbers till the first visible crack and failure. The experimental findings confirm that the major contribution of impact resistance comes from the 5D hooked end steel fibres, while the share of the intermediate meshes was significantly lower. arabic 13 English 88
Hakim S. Abdelgader (12-2020)
موقع المنشور

Solving the Problem of the Coarse Aggregate Segregation

As we known the traditional concrete (TC) is primarily composed of a mixture of cement, fine and coarse aggregates, and water. TC is made by mixing together all the components before placing them. Using two-stage concrete to solve and to eliminate the problem of the aggregate segregation which appears in TC and in the self-compacting concrete. Two-stage concrete (TSC) is a type of concrete that is placed in two stages where the coarse aggregates are first placed inside the formworks and then the grout is pumped from underneath through a manual pump. The main difference between TC and TSC is the method of preparation and size of aggregates. The described above technology is unique as it allows us to prevent aggregate segregation in a ready mixture. The results presented in this paper indicate that this technology is promising for any kind of concrete applications. arabic 7 English 48
Hakim S. Abdelgader(1-2020)
موقع المنشور