كلية تقنية المعلومات

المزيد ...

حول كلية تقنية المعلومات

تعد كلية تقنية المعلومات من أحدث كليات جامعة طرابلس حيث أنشئت بموجب قرار اللجنة الشعبية العامة للتعليم العالي سابقاً رقم 535 لسنة 2007م بشأن استحداث كليات تقنيات المعلومات بالجامعات الأساسية في ليبيا.

تكونت الكلية عند إنشائها من ثلاثة أقسام هي: قسم شبكات الحاسوب، قسم علوم الحاسوب وقسم هندسة البرمجيات والآن تشتمل على خمسة أقسام هي: قسم الحوسبة المتنقلة، قسم شبكات الحاسوب، قسم تقنيات الانترنت، قسم نظم المعلومات وقسم هندسة البرمجيات.

يتبع نظام الدراسة بالكلية نظام الفصل المفتوح ويضم كل عام دراسي فصلين دراسيين خريف وربيع وقد بدأت الكلية بقبول الطلاب والتدريس فعلياً مع بداية فصل الخريف 2008م. وتمنح الكلية درجة الإجازة المتخصصة (الجامعية) في تقنية المعلومات في أي من التخصصات سالفة الذكر. والحصول على الدرجة يتطلب إنجاز 135 وحدة دراسية على الأقل بنجاح. اللغة العربية هي لغة الدراسة بالكلية ويجوز استخدام اللغة الإنجليزية إلى جانبها. أما مدة الدراسة بالكلية فهي ثـمانية فصول دراسية.

تطمح الكلية إلى افتتاح برامج دراسات عليا بقسمي شبكات الحاسوب وهندسة البرمجيات مع بداية فصل الربيع 2018م.

حقائق حول كلية تقنية المعلومات

نفتخر بما نقدمه للمجتمع والعالم

69

المنشورات العلمية

38

هيئة التدريس

1710

الطلبة

159

الخريجون

البرامج الدراسية

بكالوريوس نظم المعلومات
تخصص نظم المعلومات

يهتم قسم نظم المعلومات بكيفية استخدام تكنولوجيا المعلومات وممارستها وتطبيقها في...

التفاصيل
بكالوريوس في تقنية المعلومات
تخصص الشبكات

قسم شبكات الحاسوب متخصص في دراسة شبكات الحاسوب إبتداءا من معرفة أنواع الشبكات و أهميتها...

التفاصيل
بكالوريوس في تقنية المعلومات
تخصص هندسة البرمجيات

يهدف البرنامج الى إعداد الكوادر القادرة على إداء انجاز المشاريع البرمجية بالطرق الهندسية...

التفاصيل

من يعمل بـكلية تقنية المعلومات

يوجد بـكلية تقنية المعلومات أكثر من 38 عضو هيئة تدريس

staff photo

أ.د. عزالدين محمد سويسي السلامي

عزالدين السلامي هو احد اعضاء هيئة التدريس بقسم الشبكات بكلية تقنية المعلومات. يعمل السيد عزالدين السلامي بجامعة طرابلس كـاستاذ دكتورمنذ 2022-02-05 وله العديد من المنشورات العلمية في مجال تخصصه في العديد من المجلات العلمية والمؤتمرات دولية من مثل مؤتمرات IEEE و ACM

منشورات مختارة

بعض المنشورات التي تم نشرها في كلية تقنية المعلومات

Applying Genetic Algorithm to Solve Partitioning and Mapping Problem for Mesh Network-on-Chip Systems

This paper presents a genetic based approach to the partitioning and mapping of multicore SoC cores over a NoC system that uses mesh topology. The proposed algorithm performs the partitioning and mapping by reducing communication cost and minimizing power consumption by placing those intercommunicated cores as close as possible together. A program developed in C++ in which the provided specification of the multicore MPSoC system captures all data dependencies before any start of the design process. Experimental results of several multimedia benchmarks demonstrates that the genetic-based approach able to find different satisfied implementations to the problem of partitioning and mapping of MPSoC cores over mesh-based NoC system that satisfies design goals
Azeddien M. Sllame, Walid Mokthar Salh(2-2021)
Publisher's website

Survey on Academic Staff Awareness of Open Educational Resources

Open Educational Resources become an important asset for many educational institutions. In this paper we report the analysis of our survey data on using open educational resources at the University of Tripoli (UoT) among the academic staff members. The survey data was collected electronically to assess the awareness and usage of open educational resources within the University of Tripoli. Results of our survey reveal that 90% of academic staff members surveyed are using open educational resources, but they are not contributing much to OER due to lack of support from university
Abdusalam F. Ahmad Nwesri(5-2019)
Publisher's website

Applying Multiple Deep Learning Models for Antipersonal Landmines Recognition

Antipersonnel landmines represent a very serious hazard endangering the lives of many people living in armed conflict counties. The huge number of human lives lost due to this phenomenon has been a strong motivation for this research. Deep Learning (DL) is considered a very useful tool in object detection, image classification, face recognition and other computer vision activities. This paper focuses on DL for the problem of landmines recognition in order to identify its type based on shape features. This research work consists of several stages: gathering a new dataset of Anti-Personnel Mines (APMs) images for training and testing purposes, employing several augmentation strategies to boost the diversity of training data, applying four different Convolutional Neural Network (CNN) models namely VGG, ResNet, MiniGoogleNet and MobileNet, and evaluating their performances on APMs recognition. In conclusion, results indicate that MiniGoogleNet exceed all of other three models in recognizing APMs with the highest accuracy rate of 97%. arabic 9 English 69
Hassan Ali Hassan Ebrahem, Abdelhamid Elwaer, Marwa Solla, Fatima Ben Lashihar, Hala Shaari, Rudwan A. Husain(7-2021)
Publisher's website