قسم الرياضيات

المزيد ...

حول قسم الرياضيات

·       تاريخية

        بعد أن نالت ليبيا استقلالها بدأ التفكير في بناء المؤسسات التعليمية  حيث كان تأسيس كلية العلوم سنة 1957 التي ضمت من بين أقسامها قسم للرياضيات البحتة و قسم للرياضيات التطبيقية ، لإعداد و تأهيل عناصر مؤهلة لسد احتياجات البلاد و خدمة المجتمع في جميع القطاعات .استمر القسم في أداء واجباته التدريسية لطلبة كلية العلوم بكل أقسامها؛ و في العام 1969 ألحق به مركز للحاسب الآلي .كما ألحقت به شعبة للإحصاء في العام 1970 و سمي قسم العلوم الرياضية.

في العام الدراسي 1971-1972 تم توحيد كل أقسام الرياضيات بجامعة طرابلس و أصبح القسم بذلك قسما واحدا بالكلية يقوم بمهام التدريس لكل طلبة الجامعة في مجالات الرياضيات البحتة و التطبيقية و الإحصاء و الحاسوب.

بتطور المناهج و تعدد التخصصات و ازدياد عدد الطلاب بالكلية تم تقسيم القسم إلى ثلاثة أقسام مستقلة و هي قسم الرياضيات و قسم الإحصاء و قسم الحاسوب و استمر الوضع على هذا الحال حتى الآن.

·       علمية

     تلعب الرياضيات دورا هاما و أساسيا في معظم المجالات التطبيقية و الإنسانية ،كما أن التقدم التقني و التكنولوجي الذي نعيشه اليوم هو نتاج استخدام الأساليب الرياضية المتقدمة؛ و كما يقال "إذا أردت الوصول إلى القمر فعليك أن تبدأ بالحسبان".

و لعل أهم ما يرمي إليه القسم من طموحات و مهام هو إعداد و تأهيل متخصصين في مجال الرياضيات و تطبيقاتها من خلال وضع برنامج تعليمي و خطة دراسية لذلك الغرض. كما شملت الخطة برنامجا للدراسات العليا لتزويد مؤسسات المجتمع -من مدارس و معاهد عليا و كليات جامعية و وحدات إنتاجية و خدمية و بحثية بالمتخصصين.

و في هذا الصدد بدأ قسم العلوم الرياضية في العام 1972 بوضع برنامج للدراسات العليا، حيث عرض البرامج التالية:-

     1-    دبلوم في الرياضيات البحتة.

     2-    ماجستير في الرياضيات البحتة.

     3-    دبلوم في الإحصاء.

     4-    دبلوم في المحاسبة.

لكن هذا البرنامج توقف بعد ثلاث سنوات ،و في العام 1985 استأنف قسم الرياضيات برنامجه للدراسات العليا حيث اقتصر الأمر على درجة الماجستير في الرياضيات البحتة و التطبيقية ،و هو مستمر حتى هذه اللحظة حيث تخرج من البرنامج ما يزيد عن 120 طالبا يساهم معظمهم في عملية التدريس الجامعي بمختلف الكليات الجامعية في ليبيا.

يساهم القسم أيضا في إعداد و مراجعة الكتب المنهجية لمقررات الرياضيات بالقسم - و على مستوى الثانويات التخصصية - إلى جانب تأليف و ترجمة الكتب و المراجع العلمية الجامعية.

حقائق حول قسم الرياضيات

نفتخر بما نقدمه للمجتمع والعالم

33

المنشورات العلمية

42

هيئة التدريس

185

الطلبة

14

الخريجون

البرامج الدراسية

من يعمل بـقسم الرياضيات

يوجد بـقسم الرياضيات أكثر من 42 عضو هيئة تدريس

staff photo

أ. امل عبدالله علي الطربان

امل الطربان هي احد اعضاء هيئة التدريس بقسم الرياضيات بكلية العلوم. تعمل السيدة امل الطربان بجامعة طرابلس كـمحاضر مساعد منذ 2016-02-08 ولها العديد من المنشورات العلمية في مجال تخصصها

منشورات مختارة

بعض المنشورات التي تم نشرها في قسم الرياضيات

A Thesis Submitted in Partial Fulfillment of the Requirements for the MasterDegree of Science in Mathematics

أعداد كاتالان هي متتالية من الأعداد الطبيعية سميت نسبة إلي العالم البلجيكي يوجين شارلز كاتالان، وتدخل في حل العديد من مسائل العد مثل عدد تقسيمات مضلع محدب إلى مثلثات، عدد القمم الجبلية التي يمكن تشكيلها باستخدام n زوج من القطع المستقيمة الصاعدة والهابطة بعض المسارات الشبكة من نقطة الاصل إلي النقط ( (n,nبالإضافة إلي بعض التطبيقات في جبر المصفوفات والزمر. تهدف هذه الدراسة إلي تسليط الضوء علي بعض خواص أعداد كاتالان وتطبيقاتها في مسائل رياضية مختلفة، بالاضافة إلي دراسة لأعداد كاتالان المعممة ومثلث كاتالانالتطبيقات في التطبيقات في جبر المصفوفات والزمر Abstract Catalan numbers are a sequence of natural numbers named after the BelgianEugene Charles Catalan mathematician(1814-1894),they enumerate a lot of classes of combinatorial objects, for example the partitionings of a convex polygon, the mountain ranges that can be drawn with n upstrokes and n down strokes, some integral lattice paths and some problems in groups and matrices.The aim o this study is to highlight some properties, some applications of Catalan numbers, the generalized Catalan numbers and Catalan triangle.
اية فريد جرناز (2016)
Publisher's website

الكسور التسلسلية وتطبيقاتها

نقوم في هذه الدراسة باستعراض لموضوع الكسور التسلسلية وبعض المفاهيم المهمة ذات العلاقة بالموضوع؛ ثم نعرج بعد ذلك إلى موضوع حساب الكسور التسلسلية وإلى بعض أنواع المتسلسلات المستخدمة في كتابة الكسور التسلسلية. بعدئذ نقوم بإيجاد واستخراج الجذور بإستخدام الكسور التسلسلية، حيث نبدأ بالجذر التربيعي فالجذر النوني ومن ثم الكميات على الصورة . نقوم بعد ذلك بحل المعادلات من الدرجة الثانية بإستخدام الكسور التسلسلية. يلي ذلك استعراض بعض التطبيقات على الكسور التسلسلية في الفيزياء والمعادلات وبعض التطبيقات الأخرى. في ختام الرسالة نعطي حسابات عددية ذات علاقة بموضوع الكسور التسلسلية مع إجراء مقارنة بنتائج يتم التوصل اليها بطرق أخرى. Abstract Though the subject of continued fractions is old; but it is still important and interesting .Accordingly this work come into light. First. We give same important definitions and concepts; then we proceed various to give variation representations using continued fractions such as Fibonacci series. The computation of roots of various kinds is another subject tackled in this concern and the solution of algebraic equations of the second degree using continued fractions, is also presented and discussed . Other important applications of continued fraction are presented, such as their use in physics, in th solution of Schrodinger equations , and in differential equation , to solve for Hermite , Laguerre and Legendre polynomials . Finally, some computations regarding the extraction of roots of real numbers are performed and compared with exact methods. It is also to be stressed that though the subject of continued fraction is an old one, but it is still vital and of interest as a useful topic of research.
زكية محمد احمد عبران (2014)
Publisher's website

Wave Equations and Separation of Variables Method for Nonlinear Boundary Problems in a Cylinder

نتناول في هذا البحث معادلات الموجة في الاسطوانة حيث نعرض تعميم لطريقة فصل المتغيرات في المسائل غير الخطية للموجة باستخدام الإحداثيات الاسطوانية، تطرح هذه المسائل غالبا في علم ميكانيكا الموائع ونظرية الصوت. تعطى معادلة الجهد غير الخطية في ثلاثة أبعاد بالصيغة التالية: وهي تمثل معادلة الموجة لتدفق الغاز أحادى القطب (waves in an isentropic gas flow). في الفضاء ثنائي البعد المعادلة السابقة تمثل معادلة الموجة في المياه الضحلة (shallow water equation). طريقة فصل المتغيرات في المسائل غير الخطية تعطي الجهد في صيغة متسلسلة فوريير (Fourier series) حيث تعطى معاملات فوريير (Fourier coefficients) كتركيبة خطية للصيغ التربيعية لدوال بيسل (Besselfunctions) ودالة خاصة والتي تظهر في العديد من المسائل الفيزيائية، نعرض خواصها وبيانها في الفصل الأخير من هذا البحث. يتم تحديد الثوابت الواردة في معاملات فوريير من الشروط الحدية للمسألة. Abstract In this thesis, we study wave equation in a cylinder. The aim of this work is to generalize the separation of variables method for the nonlinear boundary problems in cylindrical coordinates, which is naturally, appears in many applications, such as wave propagation in hydrodynamics and theory of sound. The three dimensional nonlinear wave equation for a potential function is given in the form: which describes the rotational elastic waves in an isentropic gas flow. In two dimensional space, this equation describes long surface water waves in a circular basin. The potential function is expanded in a Fourier series with respect to the angular coordinates, the usual separation of variables gives the coefficients of the Fourier series as a linear combination of quadratic expressions of Bessel functions and a special function which arises in a series of problems of mathematical physics, its properties and graph are sketched in chapter 5. The constants arises in a Fourier coefficients are determined from the boundary conditions of the initial boundary problem.
لزهر بن محمود ابو قرين (2010)
Publisher's website