قسم الرياضيات

المزيد ...

حول قسم الرياضيات

·       تاريخية

        بعد أن نالت ليبيا استقلالها بدأ التفكير في بناء المؤسسات التعليمية  حيث كان تأسيس كلية العلوم سنة 1957 التي ضمت من بين أقسامها قسم للرياضيات البحتة و قسم للرياضيات التطبيقية ، لإعداد و تأهيل عناصر مؤهلة لسد احتياجات البلاد و خدمة المجتمع في جميع القطاعات .استمر القسم في أداء واجباته التدريسية لطلبة كلية العلوم بكل أقسامها؛ و في العام 1969 ألحق به مركز للحاسب الآلي .كما ألحقت به شعبة للإحصاء في العام 1970 و سمي قسم العلوم الرياضية.

في العام الدراسي 1971-1972 تم توحيد كل أقسام الرياضيات بجامعة طرابلس و أصبح القسم بذلك قسما واحدا بالكلية يقوم بمهام التدريس لكل طلبة الجامعة في مجالات الرياضيات البحتة و التطبيقية و الإحصاء و الحاسوب.

بتطور المناهج و تعدد التخصصات و ازدياد عدد الطلاب بالكلية تم تقسيم القسم إلى ثلاثة أقسام مستقلة و هي قسم الرياضيات و قسم الإحصاء و قسم الحاسوب و استمر الوضع على هذا الحال حتى الآن.

·       علمية

     تلعب الرياضيات دورا هاما و أساسيا في معظم المجالات التطبيقية و الإنسانية ،كما أن التقدم التقني و التكنولوجي الذي نعيشه اليوم هو نتاج استخدام الأساليب الرياضية المتقدمة؛ و كما يقال "إذا أردت الوصول إلى القمر فعليك أن تبدأ بالحسبان".

و لعل أهم ما يرمي إليه القسم من طموحات و مهام هو إعداد و تأهيل متخصصين في مجال الرياضيات و تطبيقاتها من خلال وضع برنامج تعليمي و خطة دراسية لذلك الغرض. كما شملت الخطة برنامجا للدراسات العليا لتزويد مؤسسات المجتمع -من مدارس و معاهد عليا و كليات جامعية و وحدات إنتاجية و خدمية و بحثية بالمتخصصين.

و في هذا الصدد بدأ قسم العلوم الرياضية في العام 1972 بوضع برنامج للدراسات العليا، حيث عرض البرامج التالية:-

     1-    دبلوم في الرياضيات البحتة.

     2-    ماجستير في الرياضيات البحتة.

     3-    دبلوم في الإحصاء.

     4-    دبلوم في المحاسبة.

لكن هذا البرنامج توقف بعد ثلاث سنوات ،و في العام 1985 استأنف قسم الرياضيات برنامجه للدراسات العليا حيث اقتصر الأمر على درجة الماجستير في الرياضيات البحتة و التطبيقية ،و هو مستمر حتى هذه اللحظة حيث تخرج من البرنامج ما يزيد عن 120 طالبا يساهم معظمهم في عملية التدريس الجامعي بمختلف الكليات الجامعية في ليبيا.

يساهم القسم أيضا في إعداد و مراجعة الكتب المنهجية لمقررات الرياضيات بالقسم - و على مستوى الثانويات التخصصية - إلى جانب تأليف و ترجمة الكتب و المراجع العلمية الجامعية.

حقائق حول قسم الرياضيات

نفتخر بما نقدمه للمجتمع والعالم

33

المنشورات العلمية

42

هيئة التدريس

185

الطلبة

14

الخريجون

البرامج الدراسية

من يعمل بـقسم الرياضيات

يوجد بـقسم الرياضيات أكثر من 42 عضو هيئة تدريس

staff photo

أ. مني شعبان سالم عكريم

مني هي احد اعضاء هيئة التدريس بقسم الرياضيات بكلية العلوم. تعمل السيدة مني بجامعة طرابلس كـمحاضر مساعد منذ 2016-01-31 ولها العديد من المنشورات العلمية في مجال تخصصها

منشورات مختارة

بعض المنشورات التي تم نشرها في قسم الرياضيات

Order Structures of One-point Extensions of Locally Compact Spaces

Abstract For a locally compact space, we define an order-anti-isomorphism from the set of all one-point extensions of onto the set of all nonempty closed subsets of . We consider various sets of one-point extensions, including the set of all one-point locally compact extensions of , the set of all one-point Lindelöf extensions of , the set of all one-point pseudocompact extensions of , and the set of all one-point Cech-complete extensions of , among others. We study how these sets of one-point extensions are related, and investigate the relationship between their order structure, and the topology of subspaces of , we also study the relationship between various subsets of one-point extensions, the existence of minimal and maximal elements in various sets of one point extensions, and we show how some of our results may be applied to obtain relations between the order structure of certain subfamilies of ideals of partially ordered with inclusion, and the topology of subspaces of .
مسعودة سعد نجم (2009)
Publisher's website

حول تقدير الخطأ في الحلوول العددية للمعادلات التفاضلية العادية الخطية

Abstract In this thesis, we study different numerical methods used to solve ordinary differential equations of the first and second orders and where related important definitions are given . We will concentrate first on Differential Equations of the first order and the truncation errors which are derived for various methods and those compared with the expected errors , whenever possible . Two applications were given in science of biology and physics which were studied in details . Finally we draw our attention to ordinary differential equations of the second order where we study initial-value problems and boundary-value problems with the application of the wellknown numerical procedures :the shooting method and the finite difference method . The important conclusion we came up with is that the truncation error is always greater than the expected error for all methods used, and this which was expected .
عفاف احمد الجطلاوي (2014)
Publisher's website

Symmetry Methods for Solving Ordinary Differential Equations

في هذا البحث نقدم بعض طرق التناظر مع تطبيقاتها لإيجاد الحل لبعض المعادلات التفاضلية العادية. هذه الطرق تعرف ب: تناظر ليّ (Lie) وتناظر سندمان (Sundman)كلتا الطريقتين تزودنا بأداة قوية لتوليد التحويلات التي يمكن أن تستخدم لتحويل المعادلة التفاضلية المعطاة إلى معادلة أبسط مع المحافظة على الثبات (اللاتغير) للمعادلة الأصلية. في الباب الأول والثاني نقدم بعض التعريفات والمفاهيم الأساسية التي سنستخدمها في الفصول القادمة من البحث. أما في الباب الثالث سوف نقدم طريقة تناظر ليّ مع بعض المفاهيم والنظريات الأساسية لتحويلات ليّ ثم نقدم تطبيقات مجموعات التحويلات النقطية ل ليّ لإيجاد الحل العام أو الخاص للمعادلات التفاضلية العادية.وأخيراً في الباب الرابع سوف نستعرض طريقة تناظر سندمان للمعادلات التفاضلية العادية اللاخطية وسنرى أن تناظر سندمان يستخدم بنجاح لتحويل التكاملات الأولية (First Integrals) إلى تكاملات أولية جديدة والتي يمكن أن تقودنا إلى الحل العام للمعادلة المناظرة وكذلك لتحويل الحل الخاص للمعادلة إلى الحل العام لها. Abstract In this thesis we introduce some symmetry methods with it’s applications to find solutions for some ordinary differential equations.These methods are known as Lie and Sundman Symmetries, both methods provide a powerful tool for the generation of transformations that can be used to transform the given differential equation to a simpler equation while preserving the invariance of the original equation. In chapter One and Two, we introduce some definitions and basic concepts which will be needed in the following chapters of the thesis. In chapter Three, we introduce method of Lie symmetry with some basic concept and theorem for Lie transformations, then we give applications of Lie groups of transformation to obtain particular or general solutions for ordinary differential equations. Finally, in chapter Four, we investigate the Sundman symmetries of nonlinear ordinary differential equations, and we will show that these transformations and symmetries can successfully be applied to transform first integrals to the new first integrals which may lead to the general solution of the corresponding equation, also map special solutions to general solutions.
نيفين زكي محمد أبو قورة (2009)
Publisher's website