قسم الرياضيات

المزيد ...

حول قسم الرياضيات

·       تاريخية

        بعد أن نالت ليبيا استقلالها بدأ التفكير في بناء المؤسسات التعليمية  حيث كان تأسيس كلية العلوم سنة 1957 التي ضمت من بين أقسامها قسم للرياضيات البحتة و قسم للرياضيات التطبيقية ، لإعداد و تأهيل عناصر مؤهلة لسد احتياجات البلاد و خدمة المجتمع في جميع القطاعات .استمر القسم في أداء واجباته التدريسية لطلبة كلية العلوم بكل أقسامها؛ و في العام 1969 ألحق به مركز للحاسب الآلي .كما ألحقت به شعبة للإحصاء في العام 1970 و سمي قسم العلوم الرياضية.

في العام الدراسي 1971-1972 تم توحيد كل أقسام الرياضيات بجامعة طرابلس و أصبح القسم بذلك قسما واحدا بالكلية يقوم بمهام التدريس لكل طلبة الجامعة في مجالات الرياضيات البحتة و التطبيقية و الإحصاء و الحاسوب.

بتطور المناهج و تعدد التخصصات و ازدياد عدد الطلاب بالكلية تم تقسيم القسم إلى ثلاثة أقسام مستقلة و هي قسم الرياضيات و قسم الإحصاء و قسم الحاسوب و استمر الوضع على هذا الحال حتى الآن.

·       علمية

     تلعب الرياضيات دورا هاما و أساسيا في معظم المجالات التطبيقية و الإنسانية ،كما أن التقدم التقني و التكنولوجي الذي نعيشه اليوم هو نتاج استخدام الأساليب الرياضية المتقدمة؛ و كما يقال "إذا أردت الوصول إلى القمر فعليك أن تبدأ بالحسبان".

و لعل أهم ما يرمي إليه القسم من طموحات و مهام هو إعداد و تأهيل متخصصين في مجال الرياضيات و تطبيقاتها من خلال وضع برنامج تعليمي و خطة دراسية لذلك الغرض. كما شملت الخطة برنامجا للدراسات العليا لتزويد مؤسسات المجتمع -من مدارس و معاهد عليا و كليات جامعية و وحدات إنتاجية و خدمية و بحثية بالمتخصصين.

و في هذا الصدد بدأ قسم العلوم الرياضية في العام 1972 بوضع برنامج للدراسات العليا، حيث عرض البرامج التالية:-

     1-    دبلوم في الرياضيات البحتة.

     2-    ماجستير في الرياضيات البحتة.

     3-    دبلوم في الإحصاء.

     4-    دبلوم في المحاسبة.

لكن هذا البرنامج توقف بعد ثلاث سنوات ،و في العام 1985 استأنف قسم الرياضيات برنامجه للدراسات العليا حيث اقتصر الأمر على درجة الماجستير في الرياضيات البحتة و التطبيقية ،و هو مستمر حتى هذه اللحظة حيث تخرج من البرنامج ما يزيد عن 120 طالبا يساهم معظمهم في عملية التدريس الجامعي بمختلف الكليات الجامعية في ليبيا.

يساهم القسم أيضا في إعداد و مراجعة الكتب المنهجية لمقررات الرياضيات بالقسم - و على مستوى الثانويات التخصصية - إلى جانب تأليف و ترجمة الكتب و المراجع العلمية الجامعية.

حقائق حول قسم الرياضيات

نفتخر بما نقدمه للمجتمع والعالم

33

المنشورات العلمية

42

هيئة التدريس

185

الطلبة

14

الخريجون

البرامج الدراسية

من يعمل بـقسم الرياضيات

يوجد بـقسم الرياضيات أكثر من 42 عضو هيئة تدريس

staff photo

أ. امل عبدالله علي الطربان

امل الطربان هي احد اعضاء هيئة التدريس بقسم الرياضيات بكلية العلوم. تعمل السيدة امل الطربان بجامعة طرابلس كـمحاضر مساعد منذ 2016-02-08 ولها العديد من المنشورات العلمية في مجال تخصصها

منشورات مختارة

بعض المنشورات التي تم نشرها في قسم الرياضيات

On The Polynomial solutions of the classicalequations of Hermite, Legendre, and Chebyshev

المعادلات التفاضلية الكلاسيكية لهيرميت ولجاندر وتشيبي شيف مشهورة بحلولهم المتعددة الحدود تلك الحدوديات تساهم في حلول بعض المسائل في الرياضيات التطبيقية والفيزياء والهندسة .وحيث أن تلك المعادلات من الرتبة الثانية فإن لكل منها أيضاً حل ثاني مستقل خطيا ليس متعددة حدود هذه الحلول غالباً لا نستطيع وضعها في صورة دوال أولية بمفردها في هذا البحث سوف ندرس المعادلات الكلاسيكية لهيرميت ولجاندر وتشيبي شيف عندما يكون لهاالحد() على الطرف الأيمن والذي يعرف أحياناً بالحد المُجْبِر في المعادلة وسوف نثبت بأنه لكل معادلة وباختيار شرط ابتدائي محدد يكون ضروري وكافي نضمن الحل المتعدد الحدود . عندما يكون هذا الشرط الأبتدائي محدد فإن الشكل التام المضبوط للحل في صورة متعددات حدود يكون موجوداً. Abstract The classical differential equations of Hermite, Legendre, and Chebyshev are well known for their polynomial solutions. These polynomials occur in the solutions to numerous problems in applied mathematics, physics and engineering. However, since these equations are of second order, they also have second linearly independent solutions that are not polynomials. These solutions usually cannot be expressed in terms of elementary functions alone. In this thesis, the classical differential equations of Hermite, Legendre, and Chebyshev are studied when they have a forcing term on the right-hand side. It was shown that for each equation, choosing a certain initial condition is a necessary and sufficient condition for ensuring a polynomial solution. Once this initial condition is determined, the exact form of the polynomial solution is presented.
نجاة علي أحمد الجلالي (2014)
Publisher's website

Algebraic Proof of Kalton Representation Theorems

في هذا البحث ناقشنا بعض المفاهيم ومنها وصلنا إلى مفهوم دالة التمثيل الخطي المحدودة بين جبران بوليان وأخيرا أثبتنا جبريا نظريتا كالتن للتمثيل الخطي المحدود بالأبواب التالية: الباب الأول: قدمنا في هذا الباب بعض التعريفات والقواعد والنتائج الأساسية التي نحتاجها لاحقا. مثل نظرية المجموعات ومجموعة كانتور ومجموعات بوريل. الباب الثاني: ناقشنا في الباب الثاني بعض المفاهيم المتعلقة بالجبر البولي والمؤثر الخطي المحدود بين جبران بوليان. الباب الثالث: أما الباب الثالث فقد ناقشنا فيه المفاهيم المتعلقة بالقياس والقياس المؤشروالمجموعات القابلة للقياس والدوال المقيسة والتكامل بالنسبة للقياس المؤشر وأخيرا عرفنا فضاء . الباب الرابع: قدمنا النتيجة الأساسية لهذا البحث وهي الإثبات جبريا نظريتا كالتن للتمثيل الخطي المحدود. Abstract In this thesis, we give an algebraic proof of the Kalton representation theorems. In chapter one, we give some basic standard definitions and some results we need later. In chapter two we discuss the concept of Boolean algebra, and bounded linear operators between two Boolean algebras. In chapter three, we discuss the concepts of measure, signed measure, measurable sets, measurable functions, integration with respect to signed measure; later in this chapter, we define.In the last chapter (4) we give the main result of our thesis which is the proof of KALTON representation theorems.
إيمان إسماعيل النحائسي (2010)
Publisher's website

Complex Inversion Formula for Laplace Transforms and it's Applications

في هذا البحث قمنا بدراسة الصورة العكسية المركبة لتحويلات لابلاس مع تطبيقاتها. هذه الصورة مهمة جدا لحل مسائل المعادلات التفاضلية والمسائل الابتدائية والقيم الحدية وفي الابواب الاولى وضعنا تمهيدا للموضوع بحيث غطى الى حد ما ما يتطلبه من نظريات او تعريفات وكذلك في هذا البحث وفي الباب الاخير قمنا باثبات الصورة العكسية للابلاس وناقشنا شروطها والتي كتبناها على صورة نظرية بالتالي استخدمنا نظرية البواقي ونظريات كوشي لايجاد الصورة العكسية لتحويلات لابلاس وكذلك قمنا بدراسة تطبيقات على التحويلات العكسية المركبة للابلاس واخذنا ايضا تطبيقا خاصا بالقيم الحدية. Abstract In this thesis we studied complex inversion formula for Laplace transforms with it's applications, this formula is very important to solve differential equations and corresponding initial and boundary- value problem as well as, in this study we proved the complex inversion formula and we discussed the condition of this formula which are written in theory form. We also used Residue theorem and Cauchy's theorem in finding the complex inversion formula. Also we study applications on diffusion in a semi-infinite solid.
امل يوسف عبد الكريم ابوطه (2008)
Publisher's website