قسم الرياضيات

المزيد ...

حول قسم الرياضيات

·       تاريخية

        بعد أن نالت ليبيا استقلالها بدأ التفكير في بناء المؤسسات التعليمية  حيث كان تأسيس كلية العلوم سنة 1957 التي ضمت من بين أقسامها قسم للرياضيات البحتة و قسم للرياضيات التطبيقية ، لإعداد و تأهيل عناصر مؤهلة لسد احتياجات البلاد و خدمة المجتمع في جميع القطاعات .استمر القسم في أداء واجباته التدريسية لطلبة كلية العلوم بكل أقسامها؛ و في العام 1969 ألحق به مركز للحاسب الآلي .كما ألحقت به شعبة للإحصاء في العام 1970 و سمي قسم العلوم الرياضية.

في العام الدراسي 1971-1972 تم توحيد كل أقسام الرياضيات بجامعة طرابلس و أصبح القسم بذلك قسما واحدا بالكلية يقوم بمهام التدريس لكل طلبة الجامعة في مجالات الرياضيات البحتة و التطبيقية و الإحصاء و الحاسوب.

بتطور المناهج و تعدد التخصصات و ازدياد عدد الطلاب بالكلية تم تقسيم القسم إلى ثلاثة أقسام مستقلة و هي قسم الرياضيات و قسم الإحصاء و قسم الحاسوب و استمر الوضع على هذا الحال حتى الآن.

·       علمية

     تلعب الرياضيات دورا هاما و أساسيا في معظم المجالات التطبيقية و الإنسانية ،كما أن التقدم التقني و التكنولوجي الذي نعيشه اليوم هو نتاج استخدام الأساليب الرياضية المتقدمة؛ و كما يقال "إذا أردت الوصول إلى القمر فعليك أن تبدأ بالحسبان".

و لعل أهم ما يرمي إليه القسم من طموحات و مهام هو إعداد و تأهيل متخصصين في مجال الرياضيات و تطبيقاتها من خلال وضع برنامج تعليمي و خطة دراسية لذلك الغرض. كما شملت الخطة برنامجا للدراسات العليا لتزويد مؤسسات المجتمع -من مدارس و معاهد عليا و كليات جامعية و وحدات إنتاجية و خدمية و بحثية بالمتخصصين.

و في هذا الصدد بدأ قسم العلوم الرياضية في العام 1972 بوضع برنامج للدراسات العليا، حيث عرض البرامج التالية:-

     1-    دبلوم في الرياضيات البحتة.

     2-    ماجستير في الرياضيات البحتة.

     3-    دبلوم في الإحصاء.

     4-    دبلوم في المحاسبة.

لكن هذا البرنامج توقف بعد ثلاث سنوات ،و في العام 1985 استأنف قسم الرياضيات برنامجه للدراسات العليا حيث اقتصر الأمر على درجة الماجستير في الرياضيات البحتة و التطبيقية ،و هو مستمر حتى هذه اللحظة حيث تخرج من البرنامج ما يزيد عن 120 طالبا يساهم معظمهم في عملية التدريس الجامعي بمختلف الكليات الجامعية في ليبيا.

يساهم القسم أيضا في إعداد و مراجعة الكتب المنهجية لمقررات الرياضيات بالقسم - و على مستوى الثانويات التخصصية - إلى جانب تأليف و ترجمة الكتب و المراجع العلمية الجامعية.

حقائق حول قسم الرياضيات

نفتخر بما نقدمه للمجتمع والعالم

33

المنشورات العلمية

42

هيئة التدريس

185

الطلبة

14

الخريجون

البرامج الدراسية

من يعمل بـقسم الرياضيات

يوجد بـقسم الرياضيات أكثر من 42 عضو هيئة تدريس

staff photo

أ. خديجة عبدالعاطي عبدالسلام بن موسى

Kbenmussa هي احد اعضاء هيئة التدريس بقسم الرياضيات بكلية العلوم. تعمل السيدة Kbenmussa بجامعة طرابلس كـمحاضر مساعد

منشورات مختارة

بعض المنشورات التي تم نشرها في قسم الرياضيات

حول تقدير الخطأ في الحلوول العددية للمعادلات التفاضلية العادية الخطية

Abstract In this thesis, we study different numerical methods used to solve ordinary differential equations of the first and second orders and where related important definitions are given . We will concentrate first on Differential Equations of the first order and the truncation errors which are derived for various methods and those compared with the expected errors , whenever possible . Two applications were given in science of biology and physics which were studied in details . Finally we draw our attention to ordinary differential equations of the second order where we study initial-value problems and boundary-value problems with the application of the wellknown numerical procedures :the shooting method and the finite difference method . The important conclusion we came up with is that the truncation error is always greater than the expected error for all methods used, and this which was expected .
عفاف احمد الجطلاوي (2014)
Publisher's website

Differentiable Functions in Two Dimensional Real Algebra. Submitted by

في هذه الرسالة تم دراسة بعض الخواص الجبرية لفضاءات متجهة مع عمليات ضرب مختلفة بحيث تعرف جبر ليس من الضروري أن يكون تبديلي أو تنسيقي مع تقديم أمثلة توضيحية مختلفة على أنواع مختلفة من الضرب. وسنركز بشكل خاص على أنواع الجبر الحقيقي ثنائي البعد، والتي تضم جبرالأعداد العقدية أو المركبة كحالة خاصة من عدد غير محدود من الأنواع الأخرى. ثم نقدم تعريف النهاية والاستمرارية في الفضاءات وخاصة نهاية واستمرارية حاصل ضرب دالتين نطاقهما ومداهما في جبر حقيقي تنائي البعد ونستنبط مبرهنات شبيهة بالمبرهنات المعروفة في التحليل الحقيقي والتحليل المركب. كذالك تمت دراسة نوعين من المشتقات تمثل تلك الدوال. وقد تم بنا قاعدة مشتق فريشيه لحاصل ضرب دالتين بدلالة مشتق كل منهما. ثم تطرقت الرسالة إلى تعريف نوع أقوى من الاشتقاق يتوافق مع الاشتقاق العقدي (المركب) وتم إثبات أن وجود هذا المشتق شرط كافي لوجود مشتق فريشيه، مع أن العكس غير صحيح. Abstract Two dimensional real algebras are studied some illustrations of the vector space with distinct multiplications is given. The limit continuity and Frechet derivative of the product of two Functions, defined on a subset of two-dimensional real algebra with values in the algebra, are studied. A derivative, stronger than Frechet derivative, is defined. The existence of this derivative requires the existence of Frechet derivative; the converse is not true in general. Some properties of differentiable functions are given.
ريما عياد عثمان عربي (2010)
Publisher's website

Boundary-Layer-Induced Potential Flow on an Elliptic Cylinder

تطبيق نظرية نحيل الجسم لتقييم السرعات لسطح ثلاثي الأبعاد الناتجة عن طبقة الحدود على اسطوانة مقطعها قطع ناقص. الطريقة طبقت عندما يكون رقم رينولدز كبير بما فيه الكفاية بحيث يكون التقريب في طبقة الحدود الرقيقة متحققا. تخفض المسألة الجهدية الناتجة عن ذلك إلى ثنائي الأبعاد باعتبار التدفق فوق اسطوانة آخذة في التوسع مع شروط الحدود التي يسهل اختراقها. الحلول النهائية للوحة المسطحة ذات الامتداد المحدود وكذلك عندما تكون الاسطوانة مقطعها شبه دائري قد وجدت بطريقة تحليلية بسيطة. في الحالة السابقة، في حدود نظرية نحيل الجسم، فإن النتائج هي بالضبط في اتفاق مع الحل ثلاثي الأبعاد الكاملة هندسيا. Abstract The application of slender-body theory to the evaluation of the three-dimensional surface velocities induced by a boundary layer on an elliptic cylinder is considered. The method is applicable when the Reynolds number is sufficiently large so that the thin-boundary-layer approxi-mation is valid. The resulting potential problem is reduced to a two-dimensional consideration of the flow over an expanding cylinder with porous boundary conditions. The limiting solutions for a flat plate of finite span and a nearly circular cross-section are obtained in a simple analytic form. In the former case, within the limitations of slender-body theory, the results are in exact agreement with the complete three-dimensional solution for this geometry.
زينب محمد أحمد معتوق (2013)
Publisher's website