قسم الرياضيات

المزيد ...

حول قسم الرياضيات

·       تاريخية

        بعد أن نالت ليبيا استقلالها بدأ التفكير في بناء المؤسسات التعليمية  حيث كان تأسيس كلية العلوم سنة 1957 التي ضمت من بين أقسامها قسم للرياضيات البحتة و قسم للرياضيات التطبيقية ، لإعداد و تأهيل عناصر مؤهلة لسد احتياجات البلاد و خدمة المجتمع في جميع القطاعات .استمر القسم في أداء واجباته التدريسية لطلبة كلية العلوم بكل أقسامها؛ و في العام 1969 ألحق به مركز للحاسب الآلي .كما ألحقت به شعبة للإحصاء في العام 1970 و سمي قسم العلوم الرياضية.

في العام الدراسي 1971-1972 تم توحيد كل أقسام الرياضيات بجامعة طرابلس و أصبح القسم بذلك قسما واحدا بالكلية يقوم بمهام التدريس لكل طلبة الجامعة في مجالات الرياضيات البحتة و التطبيقية و الإحصاء و الحاسوب.

بتطور المناهج و تعدد التخصصات و ازدياد عدد الطلاب بالكلية تم تقسيم القسم إلى ثلاثة أقسام مستقلة و هي قسم الرياضيات و قسم الإحصاء و قسم الحاسوب و استمر الوضع على هذا الحال حتى الآن.

·       علمية

     تلعب الرياضيات دورا هاما و أساسيا في معظم المجالات التطبيقية و الإنسانية ،كما أن التقدم التقني و التكنولوجي الذي نعيشه اليوم هو نتاج استخدام الأساليب الرياضية المتقدمة؛ و كما يقال "إذا أردت الوصول إلى القمر فعليك أن تبدأ بالحسبان".

و لعل أهم ما يرمي إليه القسم من طموحات و مهام هو إعداد و تأهيل متخصصين في مجال الرياضيات و تطبيقاتها من خلال وضع برنامج تعليمي و خطة دراسية لذلك الغرض. كما شملت الخطة برنامجا للدراسات العليا لتزويد مؤسسات المجتمع -من مدارس و معاهد عليا و كليات جامعية و وحدات إنتاجية و خدمية و بحثية بالمتخصصين.

و في هذا الصدد بدأ قسم العلوم الرياضية في العام 1972 بوضع برنامج للدراسات العليا، حيث عرض البرامج التالية:-

     1-    دبلوم في الرياضيات البحتة.

     2-    ماجستير في الرياضيات البحتة.

     3-    دبلوم في الإحصاء.

     4-    دبلوم في المحاسبة.

لكن هذا البرنامج توقف بعد ثلاث سنوات ،و في العام 1985 استأنف قسم الرياضيات برنامجه للدراسات العليا حيث اقتصر الأمر على درجة الماجستير في الرياضيات البحتة و التطبيقية ،و هو مستمر حتى هذه اللحظة حيث تخرج من البرنامج ما يزيد عن 120 طالبا يساهم معظمهم في عملية التدريس الجامعي بمختلف الكليات الجامعية في ليبيا.

يساهم القسم أيضا في إعداد و مراجعة الكتب المنهجية لمقررات الرياضيات بالقسم - و على مستوى الثانويات التخصصية - إلى جانب تأليف و ترجمة الكتب و المراجع العلمية الجامعية.

حقائق حول قسم الرياضيات

نفتخر بما نقدمه للمجتمع والعالم

33

المنشورات العلمية

42

هيئة التدريس

185

الطلبة

14

الخريجون

البرامج الدراسية

من يعمل بـقسم الرياضيات

يوجد بـقسم الرياضيات أكثر من 42 عضو هيئة تدريس

staff photo

أ. امل عبدالله علي الطربان

امل الطربان هي احد اعضاء هيئة التدريس بقسم الرياضيات بكلية العلوم. تعمل السيدة امل الطربان بجامعة طرابلس كـمحاضر مساعد منذ 2016-02-08 ولها العديد من المنشورات العلمية في مجال تخصصها

منشورات مختارة

بعض المنشورات التي تم نشرها في قسم الرياضيات

On Prime Near-rings with Generalized Derivations

خلال العقود القليلة الماضية بحوث كثيرة تم تقديمها في خاصية التبديل في الحلقات الأولية مع الاشتقاق، وكان من الطبيعي دراسة نتائج مماثلة في قرب الحلقات. وأول دراسة قدمت كانت في سنة 1987 من قبل الباحثان (H.E.Bell and G.Mason)، ومنذ ذلك الوقت الكثير من الباحثين أثروا هذا الموضوع في اتجاهات مختلفة. التشاكل الجمعي يقال عنه تعميم للاشتقاق إذا كان يوجد اشتقاق على حيث أن. For all الهدف الأساسي في هذا البحث هي نظري (9, Theorem 3). ولكن هنا يجب إن نشير إلى إن البرهان المعطي كان غير صحيح، وفي هذا البحث تم تصحيح البرهان وذالك العمل دفعنا إلى تعميم التمهيدية (Lemma 3.2.3) التي من خلاله استطعنا تصحيح البرهان Abstract Over the last few decades, a lot of work has been done on commutativity of prime rings with derivations. It is natural to look for comparable results on near-rings, here we should mention that the first investigation of derivation of near-rings was initiated by H.E.Bell and G.Mason in 1987.Recently, some results concerning commutativity in prime near-rings with derivation that have been generalized in several ways. An additive endomorphism is called a generalized derivation if there exist a derivation of such that for all in. The main object of this thesis is a result stated in [9, Theorem 3], here we should mention that the given proof was not correct. At this point it is interesting to continue our investigation by providing some technical result which enables us to establish the correct proof of this result.
جبريل محمد خير الله البكوري (2011)
Publisher's website

Riemannian Geometry and It’s Applications

في البحث قمنا بدراسة نوع من الهندسة اللاقليدية وتسمى هندسة ريمن أو كما تسمى بالهندسة الناقصة مع تطبيقاتها في عديد المجالات ، و أساس هذه الهندسة عدم وجود توازي بين المستقيمات في السطوح الكروية ،و تقر هذه الهندسة بتقاطع المستقيمات فقط وهو نقد للمسلمة الخامسة بالذات في هندسة اقليديس ففي الفصل الأول وضعنا تمهيدا لعدة موضوعات واجهتنا بحيث غطى إلى حد ما هذه المسلمات و المفاهيم الأخرى من خلال النظريات و النتائج التي قمنا بدراستها و التي تتعامل مع السطح الكروي وهذا يعتبر نموذج مثالي لهندسة ريمن.وفى الفصول الأخيرة قمنا بدراسة المثلث الكروي العام و حل جميع المثلثات الكروية الأخرى التي لها علاقة وطيدة بهندسة ريمن و ذلك بتطبيق قاعدتي نابير وهفرساين.واستخدمنا طرق عديدة لحل المثلث الارضى الذي يعتبر من أهم التطبيقات لهذه الهندسة و غيرها من المثلثات المشهورة. Abstract In this study, we studied one of non-Euclidean geometry “Riemannian geometry” with its applications, the basic of Riemannian geometry is the no parallel assumption. We illustrated the difference between Riemannian geometry and Euclid’s geometry by some outcomes and results; we also discussed methods of solution of any spherical triangle. Also, we studied some methods of solving general spherical triangles; we used this methods of solving the terrestrial triangle, which one of the main applications of spherical trigonometry pertains to marine, and air navigation over large areas.
سعاد محمد انجاح (2010)
Publisher's website

مؤثرات كازيمير وتطبيقاتها

في هذه الدراسة نقدم مؤثرات كازيمير ونعرج على أهميتها كأداة رياضية تستعمل في المجالات التطبيقية وخصوصا في الفيزياء قبل ذلك نعطي نبذة جيدة عن جبرلي والذي يفترض بأنه جبر المبادلات ثم نربط بين ذلك وبين مؤثرات كازيمير.كتطبيق واضح في هذا الاتجاه، ندرس مؤثرات الزخم الزواي وعلاقاتها التبديلية وفي الختام نعطي بعض الأمثلة على تطبيقات مؤثر كازيمير . Abstract In this study, we introduce Casimir operators and their importance as a mathematical tool to be used in applied fields, especially in physics. Before that we give a good account on Lie algebra which is supposed to be the algebra of commutators and then we relate this to Casimir operators. As an obvious application in this concern we study angular momentum operators and their commutation relations. Finally we give some examples on the applications of the Casimir operator .
نادية محمد الأكرش (2016)
Publisher's website