Department of Mathematics

More ...

About Department of Mathematics

Facts about Department of Mathematics

We are proud of what we offer to the world and the community

33

Publications

42

Academic Staff

185

Students

14

Graduates

Programs

Major

...

Details

Who works at the Department of Mathematics

Department of Mathematics has more than 42 academic staff members

staff photo

Mr. AML ABDULLAH ALI ALTIRBAN

امل الطربان هي احد اعضاء هيئة التدريس بقسم الرياضيات بكلية العلوم. تعمل السيدة امل الطربان بجامعة طرابلس كـمحاضر مساعد منذ 2016-02-08 ولها العديد من المنشورات العلمية في مجال تخصصها

Publications

Some of publications in Department of Mathematics

The Completeness, Consistency and Independent of Rosser Axiomatic System

هدف هذه الرسالة هو دراسة النسق المنطقي ل Rosserمن خلال إثبات جميع مبرهنات النسق المنطقي RA. ثم اثباث ان كل مبرهنة في RA صحيحة (Valid) -(ٍSoundness) وكذلك اثباث خاصية الاكتمال (Completeness) من خلال انه إذا كانت Aϵ RA(Tautology) فان A مبرهنة في RA(. (i.e ├R A ⊃ ╞R Aوأخيرا ثم اثباث استقلالية النسق (Independency) وذلك من خلال استقلال كل مسلمة على حده. Abstract The aim of this thesis is to show the Soundness, Completeness and Independency of Rosser Axiomatic System RA. by proving the following: - Every theorem of RA is a tautology (i.e ├RA ⊃╞R A) (The soundness) - If A is a Wff. of RA and A is a tautology , then├R A(The Completeness) -The Independency of AxR1 , AxR2 and AxR3.
مبروكة على الطوير (2010)
Publisher's website

Complex Inversion Formula for Laplace Transforms and it's Applications

في هذا البحث قمنا بدراسة الصورة العكسية المركبة لتحويلات لابلاس مع تطبيقاتها. هذه الصورة مهمة جدا لحل مسائل المعادلات التفاضلية والمسائل الابتدائية والقيم الحدية وفي الابواب الاولى وضعنا تمهيدا للموضوع بحيث غطى الى حد ما ما يتطلبه من نظريات او تعريفات وكذلك في هذا البحث وفي الباب الاخير قمنا باثبات الصورة العكسية للابلاس وناقشنا شروطها والتي كتبناها على صورة نظرية بالتالي استخدمنا نظرية البواقي ونظريات كوشي لايجاد الصورة العكسية لتحويلات لابلاس وكذلك قمنا بدراسة تطبيقات على التحويلات العكسية المركبة للابلاس واخذنا ايضا تطبيقا خاصا بالقيم الحدية. Abstract In this thesis we studied complex inversion formula for Laplace transforms with it's applications, this formula is very important to solve differential equations and corresponding initial and boundary- value problem as well as, in this study we proved the complex inversion formula and we discussed the condition of this formula which are written in theory form. We also used Residue theorem and Cauchy's theorem in finding the complex inversion formula. Also we study applications on diffusion in a semi-infinite solid.
امل يوسف عبد الكريم ابوطه (2008)
Publisher's website

Symmetry Methods for Solving Ordinary Differential Equations

في هذا البحث نقدم بعض طرق التناظر مع تطبيقاتها لإيجاد الحل لبعض المعادلات التفاضلية العادية. هذه الطرق تعرف ب: تناظر ليّ (Lie) وتناظر سندمان (Sundman)كلتا الطريقتين تزودنا بأداة قوية لتوليد التحويلات التي يمكن أن تستخدم لتحويل المعادلة التفاضلية المعطاة إلى معادلة أبسط مع المحافظة على الثبات (اللاتغير) للمعادلة الأصلية. في الباب الأول والثاني نقدم بعض التعريفات والمفاهيم الأساسية التي سنستخدمها في الفصول القادمة من البحث. أما في الباب الثالث سوف نقدم طريقة تناظر ليّ مع بعض المفاهيم والنظريات الأساسية لتحويلات ليّ ثم نقدم تطبيقات مجموعات التحويلات النقطية ل ليّ لإيجاد الحل العام أو الخاص للمعادلات التفاضلية العادية.وأخيراً في الباب الرابع سوف نستعرض طريقة تناظر سندمان للمعادلات التفاضلية العادية اللاخطية وسنرى أن تناظر سندمان يستخدم بنجاح لتحويل التكاملات الأولية (First Integrals) إلى تكاملات أولية جديدة والتي يمكن أن تقودنا إلى الحل العام للمعادلة المناظرة وكذلك لتحويل الحل الخاص للمعادلة إلى الحل العام لها. Abstract In this thesis we introduce some symmetry methods with it’s applications to find solutions for some ordinary differential equations.These methods are known as Lie and Sundman Symmetries, both methods provide a powerful tool for the generation of transformations that can be used to transform the given differential equation to a simpler equation while preserving the invariance of the original equation. In chapter One and Two, we introduce some definitions and basic concepts which will be needed in the following chapters of the thesis. In chapter Three, we introduce method of Lie symmetry with some basic concept and theorem for Lie transformations, then we give applications of Lie groups of transformation to obtain particular or general solutions for ordinary differential equations. Finally, in chapter Four, we investigate the Sundman symmetries of nonlinear ordinary differential equations, and we will show that these transformations and symmetries can successfully be applied to transform first integrals to the new first integrals which may lead to the general solution of the corresponding equation, also map special solutions to general solutions.
نيفين زكي محمد أبو قورة (2009)
Publisher's website