Symmetry Methods for Solving Ordinary Differential Equations
في هذا البحث نقدم بعض طرق التناظر مع تطبيقاتها لإيجاد الحل لبعض المعادلات التفاضلية العادية. هذه الطرق تعرف ب: تناظر ليّ (Lie) وتناظر سندمان (Sundman)كلتا الطريقتين تزودنا بأداة قوية لتوليد التحويلات التي يمكن أن تستخدم لتحويل المعادلة التفاضلية المعطاة إلى معادلة أبسط مع المحافظة على الثبات (اللاتغير) للمعادلة الأصلية. في الباب الأول والثاني نقدم بعض التعريفات والمفاهيم الأساسية التي سنستخدمها في الفصول القادمة من البحث. أما في الباب الثالث سوف نقدم طريقة تناظر ليّ مع بعض المفاهيم والنظريات الأساسية لتحويلات ليّ ثم نقدم تطبيقات مجموعات التحويلات النقطية ل ليّ لإيجاد الحل العام أو الخاص للمعادلات التفاضلية العادية.وأخيراً في الباب الرابع سوف نستعرض طريقة تناظر سندمان للمعادلات التفاضلية العادية اللاخطية وسنرى أن تناظر سندمان يستخدم بنجاح لتحويل التكاملات الأولية (First Integrals) إلى تكاملات أولية جديدة والتي يمكن أن تقودنا إلى الحل العام للمعادلة المناظرة وكذلك لتحويل الحل الخاص للمعادلة إلى الحل العام لها. Abstract In this thesis we introduce some symmetry methods with it’s applications to find solutions for some ordinary differential equations.These methods are known as Lie and Sundman Symmetries, both methods provide a powerful tool for the generation of transformations that can be used to transform the given differential equation to a simpler equation while preserving the invariance of the original equation. In chapter One and Two, we introduce some definitions and basic concepts which will be needed in the following chapters of the thesis. In chapter Three, we introduce method of Lie symmetry with some basic concept and theorem for Lie transformations, then we give applications of Lie groups of transformation to obtain particular or general solutions for ordinary differential equations. Finally, in chapter Four, we investigate the Sundman symmetries of nonlinear ordinary differential equations, and we will show that these transformations and symmetries can successfully be applied to transform first integrals to the new first integrals which may lead to the general solution of the corresponding equation, also map special solutions to general solutions.
نيفين زكي محمد أبو قورة (2009)
Publisher's website