Department of Statistics

More ...

About Department of Statistics

Facts about Department of Statistics

We are proud of what we offer to the world and the community

13

Publications

24

Academic Staff

130

Students

54

Graduates

Programs

Major

...

Details

Who works at the Department of Statistics

Department of Statistics has more than 24 academic staff members

staff photo

Prof.Dr. Rida MOHAMED Ibrahim Khaga

رضا قاجة هو احد اعضاء هيئة التدريس بقسم الإحصاء بكلية العلوم. يعمل السيد رضا قاجة بجامعة طرابلس كـأستاذ منذ 1986-09-10 وله العديد من المنشورات العلمية في مجال تخصصه

Publications

Some of publications in Department of Statistics

البناء العاملي لمقياس القلق الاحصائي لدى طلبة الدراسات العليا في ليبيا باستخدام التحليل العاملي التوكيدي

هدفت الدراسة الى العرف على البناء العاملي لمقياس القلق الاحصائي لدى طلبة الدراسات العليا في ليبيا باستخدام التحليل العاملي التوكيدي، للتأكد من امكانية استخدام المقياس لتشخيص القلق الاحصائي لدى طلبة الدراسات العليا بدرجة يمكن التعويل عليها. وقد طبق هذا المقياس والذي قام بتعريبه (ابو هاشم، 2009م) على عينة مكونة من 150 طالباً وطالبة، بواقع 69 طالباً و 81 طالبة، حيث تكونت اداة الدراسة بصيغتها النهائية من 51 فقرة، وباستخدام التحليل العاملي الاستكشافي والتحليل العاملي التوكيدي وتحليل التباين متعدد المتغيرات واظهرت النتائج ما يلي: اشارت نتائج التحليل الاحصائي الى صدق المقياس وثباته ويمكن استخدامه والاعتماد عليه لقيسا القلق الاحصائي لطلبة الدراسات العليا في ليبيا، وقج تشبعت المكونات الاساسية للقلق الاحصائي لدة طلاب الدراسات العليا على عدد من العوامل تنظم حولها العوامل المشاهدة، وايضاء اشارت النتائج الى عدم وجود فروق فروق ذات دلالة احصائية في القلق الاحصائي تبعا لمتغير المرحلة (الماجستير والدكتوراه).
جمال محمد اندير, مريم احمد ارحيم(9-2020)
Publisher's website

Comparison between the Neural Networks Forecasting With Arima Models

لهذه الدراسة هدفان مهمان وهما: أولاً: توضيح فكرة بناء الشبكات؛ العصبية المقترحة ثانياً: مقارنة هذه الطرق بالإدراك الجيد لنماذج السلاسل الزمنية (ARIMA) باستعمال المعيار MSE، وهو المعيار الأول لتدريب الشبكة العصبية والثاني لحساب آلية توقعات نماذج الشبكات العصبية. باستخدام بعض الأمثلة الخاصة اتضح أن الإجراءات حول نموذج الشبكات العصبية وجدت بأنها تقدم توقعات أفضل من نماذج السلاسل الزمنية، وأن نماذج الشبكات العصبية قد تستعمل في التنبؤ ببيانات السلاسل الزمنية بتعديل بعض الأوزان التى تعتبر معالم نماذج الشبكات العصبية والتى يمكن أن تقدر خلال عملية تدريب الشبكة، ودقة التوقعات مقدرة بالدالة المناسبة التى تستعمل في عملية تدريب الشبكة. إن مشكلة تنبؤ النماذج شائعة في التحليلات الإحصائية، وفى الغالب الطرق مستعملة للتعامل مع تنبؤ نموذج الانحدار والسلاسل الزمنية بالرغم من أن هذه الطرق قد لاتكون دقيقة في العينات الصغيرة و النتائج المتحصل عليها في هذا البحث حسبت بفصل مجموعة البيانات إلى مجموعتين جزئيتين أو أكثر، استعملنا الجزء الأول لملائمة النموذج والجزء الأخير لبناء التوقع باستخدام المعيار MSE كأداة للمقارنة بين النماذج, وكلما كانت قيمة هذا المعيار صغيرة كان النموذج أفضل. Abstract This study has two objectives. First, presenting artificial neural networks (ANN) second, comparing the proposed method with the well known ARIMA model, the accuracy of the neural network forecasts is compared with the corresponding ARIMA models by using the mean square error (MSE). By using the proposed (MSE) measures the artificial neural networks (ANN) were found deliver a better forecasts than the ARIMA model. A class of artificial neural networks (ANN) may be used in forecasting time series data. It may be used to approximate unknown expectation function of future observation given past values , thus the weights of these ANN can be viewed as parameters, which can be estimated through the network training. Then the model is used for forecasting. The accuracy of the forecasts is evaluated by suitable function. The problem of forecasting model is common in statistical analysis. One of the mostly used approach to deal with forecasting model is regression and time series. Although, approaches may not accurate in small sample. In an effort to forecast daily flow waters to the three important dams such as Ejdabia, Sirt, Benghazi, we will training to a take new tool if forecasting model which known as neural network model. This tool deal with testing data after made as partition of the original series into two sets first is called training set, were used to fit the model, while the second is called testing sets, were used to make forecasting. In this work the MSE is well known as tool for comparing between the models, further more when the MSE is less, the value of this model is a better than other models.
ساميه محمد ميره (2010)
Publisher's website

استخدام البوتسترات في التقدير

يتعلق الاستنتاج الاحصائي بتقدير معالم المجتمع المجهولة بالاعتماد على عينات عشوائية يتم سحبها من مفردات المجتمع باستخدام طريقتين للتقدير هما تقدير النقطة وتقدير الفترة. يحتاج تقدير الفترة الى معرفة توزيع المجتمع الذي سحبت منه العينة وفي حالات كثيرة نحتاج الى افتراضات تتعلق بتوزيع المجتمع وهذه الافتراضات تستخدمها الطريقة الكلاسيكية لاستخدام نظرية النهاية المركزية وهي في الغالب تعطي تقديرات جيدة الا في بعض الحالات التي لا تصح فيها هذه الافتراضات. في مثل هذه الحالات يلجأ الاحصائيون الى طرق أخرى للتقدير تسمى الطرق اللامعلمية للتقدير التي اثبتت فعاليتها في حالة عدم صحة الافتراضات المتعلقة بمعرفتنا للتوزيع المستخدم في عملية التقدير. من الطرق التي اثبتت فعاليتها في التقدير طريقة البوتستراب (Bootstrap) التي تعتمد على إعادة المعاينة من العينة المتاحة لدينا ومعاملة هذه العينة كمجتمع نتحصل على عينات منه باستخدام اسلوب المعاينة العشوائية البسيطة بالارجاع. أوجد هذه الطريقة Bradley Efron من جامعة ستانفورد بالولايات المتحدة عام (1979) والتي تعتبر احدى الدعمات القوية لبناء طرق الاستدلال الاحصائي في التحليل الحديث للبيانات الاحصائية.وفي هذه الرسالة قمنا بإستخدام اسلوب المحكاة لتقدير معلمتين من معالم المجتمع (المتوسط ومعامل الارتباط) بإستخدام طريقة البوتستراب وقد توصلنا إلى نتائج جيدة وأكثر دقة لتقدير الفترة بإستخدام هذا الاسلوب من التي نحصل عليها من الطرق التقليدية الاخرى.
هاجر محمود مؤقت (2016)
Publisher's website