Department of Food Hygiene

More ...

About Department of Food Hygiene

Facts about Department of Food Hygiene

We are proud of what we offer to the world and the community

10

Publications

7

Academic Staff

Who works at the Department of Food Hygiene

Department of Food Hygiene has more than 7 academic staff members

staff photo

Prof.Dr. Aboubaker Mohamed Milad Garbaj

أبوبكر قرباج هو احد اعضاء هيئة التدريس بقسم الرقابة الصحية على الاغذية بكلية الطب البيطري. يعمل السيد أبوبكر قرباج بجامعة طرابلس كـأستاذ 1992 وله العديد من المنشورات العلمية في مجال تخصصه

Publications

Some of publications in Department of Food Hygiene

Bactericidal Effects of Natural Tenderizing Enzymes on Escherichia Coli and Listeria monocytogenes

The objective of this study was to determine the antimicrobial activity of proteolytic, meat-tenderizing enzymes (papain and bromelain) against E. coli and L. monocytogenes at three different temperatures (5, 25 and 35°C). Two overnight cultures of E. coli JM109 and L. monocytogenes were separately suspended in 1% peptone water and exposed to a proteolytic enzyme (papain or bromelain) at three different temperatures. Bromelain concentrations (4 mg/ml) and (1 mg/ml) tested at 25°C against E. coli and L. monocytogenes, respectively, were the most effective concentrations tested reducing populations by 3.37 and 5.7 log CFU/ml after 48 h, respectively. Papain levels of (0.0625 mg/ml) and (0.5 mg/ml) were the most effective concentration tested at 25°C against E. coli and L. monocytogenes, respectively, reducing populations by 4.94 and 6.58log CFU/ml after 48h, respectively. Interestingly, the lower papain concentration tested (0.0625 mg/ml) was more effective than the higher concentration (0.5 mg/ml) against E. coli at all three temperatures. As expected, the temperature was directly related to enzyme efficacy against both E. coli and L. monocytogenes.
Hesham Taher Naas(1-2013)
Publisher's website

Enterohemorrhagic Escherichia coli O157 in milk and dairy products from Libya: Isolation and molecular identification by partial sequencing of 16S rDNA

Aim: The aim of this work was to isolate and molecularly identify enterohemorrhagic Escherichia coli (EHEC) O157 in milk and dairy products in Libya, in addition; to clear the accuracy of cultural and biochemical identification as compared with molecular identification by partial sequencing of 16S rDNA for the existing isolates. Materials and Methods: A total of 108 samples of raw milk (cow, she-camel, and goat) and locally made dairy products (fermented cow’s milk, Maasora, Ricotta and ice cream) were collected from some regions (Janzour, Tripoli, Kremiya, Tajoura and Tobruk) in Libya. Samples were subjected to microbiological analysis for isolation of E. coli that was detected by conventional cultural and molecular method using polymerase chain reaction and partial sequencing of 16S rDNA. Results: Out of 108 samples, only 27 isolates were found to be EHEC O157 based on their cultural characteristics (Tellurite- Cefixime-Sorbitol MacConkey) that include 3 isolates from cow’s milk (11%), 3 isolates from she-camel’s milk (11%), two isolates from goat’s milk (7.4%) and 7 isolates from fermented raw milk samples (26%), isolates from fresh locally made soft cheeses (Maasora and Ricotta) were 9 (33%) and 3 (11%), respectively, while none of the ice cream samples revealed any growth. However, out of these 27 isolates, only 11 were confirmed to be E. coli by partial sequencing of 16S rDNA and E. coli O157 Latex agglutination test. Phylogenetic analysis revealed that majority of local E. coli isolates were related to E. coli O157:H7 FRIK944 strain. Conclusion: These results can be used for further studies on EHEC O157 as an emerging foodborne pathogen and its role in human infection in Libya.
Hesham Taher Naas(11-2016)
Publisher's website

Effect of combining nisin with modified atmosphere packaging on inhibition of Listeria monocytogenes in ready-to-eat turkey bologna

The objective of this study was to evaluate the effect of nisin in combination with different types of packaging on the survival of Listeria monocytogenes in ready-to-eat low-fat turkey bologna. Bologna was inoculated with L. monocytogenes exposed to 1 of 6 treatments: 3 packaging treatments (100% CO2, air, vacuum), each with and without nisin. Bologna was refrigerated and sampled 9 times over 42 d. Nisin reduced initial L. monocytogenes populations by 1.5 to 2 log cycles and 100% CO2 packaging prevented outgrowth throughout 42 d of storage, whereas non-CO2 packaging displayed a 2-log increase in population during storage. Nisin (500 IU/mL) combined with 100% CO2 was effective in reducing Listeria and preventing outgrowth on bologna over 42 d of refrigerated storage.
Hesham Taher Naas(3-2013)
Publisher's website