Department of Chemical Engineering

More ...

About Department of Chemical Engineering

Facts about Department of Chemical Engineering

We are proud of what we offer to the world and the community

15

Publications

23

Academic Staff

336

Students

47

Graduates

Who works at the Department of Chemical Engineering

Department of Chemical Engineering has more than 23 academic staff members

staff photo

Dr. Mawaheb Mohamed Zarok Derdar

د.مواهب محمد الزروق الدردار هي احد اعضاء هيئة التدريس بقسم الهندسة الكيميائية بكلية الهندسة. تعمل الدكتورة مواهب الدردار بجامعة طرابلس كـاستاذ مشارك منذ 15-01-2020 ولها العديد من المنشورات العلمية في مجال تخصصها ، رئيس قسم الهندسة الكيميائية منذ فبراير 2022م

Publications

Some of publications in Department of Chemical Engineering

The Kinetic of Matrix Acidizing in Reservoir Rocks

Abstract Matrix acidizing is a stimulation method commonly used to remove near wellbore damage and restore original formation permeability. It involves the injection of acid into formations at pressures below the fracture pressure. Acid flows down the well into the reservoir, and then reacts with the rock such that any near wellbore permeability damage created by meling or completion fluids can be removed and apparent permeability increased. A matrix acidizing treatment can be' applied to either a sandstone or a carbonate reservoir. Different acids are used because different minerals are involved in these treatments. Hydrochloric acid (HCI) is usually used in carbonate reservoirs to react with carbonates. Hydrofluoric acid (HF) or mixture of Hydrofluoric acid (HF) with Hydrochloric acid (HCI) is commonly used in sandstone porous media to react with silicates and feldspars in the rock. Since the mechanisms of acid reactions with these two types of rock are different, results of the treatments are different as well. In sandstone matrix acidizing, permeability increase behind the acid front is relatively homogeneous. The flow and reaction of acid in carbonate porous media results in the formation of highly conductive flow channels, commonly referred to as wormholes. In the present work we have studies the first study to test the optimal acid flux theory presented by Wang (1) with several independent sets of experimental data. The model was comparing with field data. The second study we use model presented by McCune and Fogler.(2) This previous studies on mathematical modeling of the chemical reactions between sandstone and mud acid. This model is lumped-parameter model. The lumped-parameter model simplifies the chemistry of the dissolution of sandstone minerals with mud acid. The models are compared with the experimental data at different flow rates.
عبد ربه ادريس بوسدرة (2010)
Publisher's website

Simulation of Wet Gas Pipe LineUnder Steady & Transient Conditions

Abstract Natural gas has become an important source of energy in the world. Throughout the 19th century, natural gas was used almost exclusively as a source of light and its use remained localized because of lack of transport structures, making it difficult to transport large quantities of natural gas long distances. There was an important change in 1890 with the invention of leak-proof pipeline couplings, but transportation of natural gas to long distance customers did not become practical until the 1920s as a result of technological advances in pipelines. Moreover, it was only after World War II that the use of natural gas grew rapidly because of the development of pipeline networks and storage systems. Gas pipe lines are operated under steady state conditions. However, when transporting high temperature wet gas the gas getting cooled and heavy components condensate, Hence, pigs is usually are wanted to clean the pipe line to reduce pressure drop along the pipe In this study an existing pipeline was studied under steady and unsteady state. HYSYS and ProFES programs were utilized. Result show that gas temperature changes with time and distance. Results show that temperature and gas approach the ambient temperature at about 20 Km of pipe line length consequently, liquid phase volume fraction increase in first 20 Km of the pipe.
عدلي عمر احمد (2011)
Publisher's website

Study of the Liquid-Liquid Equilibrium for the System Acetonitrile + Benzene + N-heptane

Abstract This research was an attempt to use the currently available activity coefficient methods with universal sets of parameters to simultaneously predict ternary liquid-liquid equilibrium data. The focus of this research was to calculate phase equilibrium data within fair error using set of Parameters obtained from the above-mentioned models. The significance of this work is to study the liquid-liquid phase equilibrium of the ternary system at several temperatures and to test the capability of the various equilibrium models to correlate these data. A series of liquid-liquid equilibrium measurements were performed by changing the composition of the mixture.The prepared mixtures were placed in the extraction vessel and stirred for 2 h and then left to settle for 4 h. Samples were taken by a syringe from both the upper phase and lower layers. Both phases were analyzed using gas chromatography equipped. Liquid-liquid equilibrium for the ternary system acetonitrile + benzene + n-heptane was measured at 298,313,333 K. The results were used to estimate the interaction parameters between each of the three compounds for the NRTL and UNIQUAC models as a function of temperature. The estimated interaction parameters were successfully used to predict the equilibrium compositions by the two models. The UNIQUAC equation was the most accurate model in correlating the overall equilibrium compositions of the studied system. NRTL models satisfactorily predicted the equilibrium compositions. In each of the mentioned the ternary system, the calculated and experimental data were compared. The root mean square deviation (RMSD) between the observed and calculated mole percent for NRTL, UNIQUAC was 1.44%, 1.35% for acetonitrile + benzene + n-heptane
عماد الدين محمد الزغداني (2014)
Publisher's website