Department of Mechanical and Industrial Engineering

More ...

About Department of Mechanical and Industrial Engineering

Facts about Department of Mechanical and Industrial Engineering

We are proud of what we offer to the world and the community

44

Publications

40

Academic Staff

910

Students

0

Graduates

Who works at the Department of Mechanical and Industrial Engineering

Department of Mechanical and Industrial Engineering has more than 40 academic staff members

staff photo

Prof.Dr. saleh mohamed omer abughres

أ. د. صالح محمد أبوغريس هو احد اعضاء هيئة التدريس بقسم الهندسة الميكانيكية والصناعية بكلية الهندسة. يعمل أ. د. صالح محمد أبوغريس بجامعة طرابلس كـأستاذ منذ 1981-01-01 وله العديد من المنشورات العلمية في مجال تخصصه>

Publications

Some of publications in Department of Mechanical and Industrial Engineering

Calculating the Efficiency of Steam Boilers Based on Its Most Effecting Factors: A Case Study

This paper is concerned with calculating boiler efficiency as one of the most important types of performance measurements in any steam power plant. That has a key role in determining the overall effectiveness of the whole system within the power station. For this calculation, a Visual-Basic program was developed, and a steam power plant known as El-Khmus power plant, Libya was selected as a case study. The calculation of the boiler efficiency was applied by using heating balance method. The findings showed how the maximum heat energy which produced from the boiler increases the boiler efficiency through increasing the temperature of the feed water, and decreasing the exhaust temperature along with humidity levels of the of fuel used within the boiler. arabic 15 English 78
Rajab HOKOMA, Nabil M. Muhaisen(1-2012)
Publisher's website

Just-In-Time for Reducing Inventory Costs throughout a Supply Chain: A Case Study

Supply Chain Management (SCM) is the integration between manufacturer, transporter and customer in order to form one seamless chain that allows smooth flow of raw materials, information and products throughout the entire network that help in minimizing all related efforts and costs. The main objective of this paper is to develop a model that can accept a specified number of spare-parts within the supply chain, simulating its inventory operations throughout all stages in order to minimize the inventory holding costs, base-stock, safety-stock, and to find the optimum quantity of inventory levels, thereby suggesting a way forward to adapt some factors of Just-In-Time to minimizing the inventory costs throughout the entire supply chain. The model has been developed using Micro- Soft Excel & Visual Basic in order to study inventory allocations in any network of the supply chain. The application and reproducibility of this model were tested by comparing the actual system that was implemented in the case study with the results of the developed model. The findings showed that the total inventory costs of the developed model are about 50% less than the actual costs of the inventory items within the case study. arabic 14 English 67
Rajab HOKOMA, Faraj Farhat El Dabee(9-2012)
Publisher's website

Effects of Finny-shaped Absorber Surface on Basin-solar Still Behavior

Abstract For this study, two identical single-effect of single basin solar stills are designed, fabricated, tested, and evaluated, where one of them is employed alone which is referred to as “passive still”, while the other is coupled to a flat plate solar collector introducing what so called the active still. Both are installed at the same site in Tripoli-Libya and they are oriented due to south. Measurement of various temperatures, solar intensities, humidity, wind speed and distillated water production are taken each hour for several days of August under various operating conditions. Two operational modes are considered; each of the passive and active stills is operating for the whole day. These tests were performed using seawater and water basin different depths. The water production of the active still is reported to be 6.6 L/m2.day which is higher than that of the passive still by 56 per cent approximately. The maximum daily efficiency is calculated to be 24 per cent approximately for the active still system while it is 14 per cent approximately for the passive still. Yet, the still thermal performance seems to have a complex function of geometrical, constructional, and operational conditions, site characteristics and layout details.
صالح أحمد سرابيط (2010)
Publisher's website