Department of Mathematics

More ...

About Department of Mathematics

Facts about Department of Mathematics

We are proud of what we offer to the world and the community

33

Publications

42

Academic Staff

185

Students

14

Graduates

Programs

Major

...

Details

Who works at the Department of Mathematics

Department of Mathematics has more than 42 academic staff members

staff photo

Mr. AML ABDULLAH ALI ALTIRBAN

امل الطربان هي احد اعضاء هيئة التدريس بقسم الرياضيات بكلية العلوم. تعمل السيدة امل الطربان بجامعة طرابلس كـمحاضر مساعد منذ 2016-02-08 ولها العديد من المنشورات العلمية في مجال تخصصها

Publications

Some of publications in Department of Mathematics

Solution of Laplace's Equation in some Curvilinear Coordinates (Cylindrical, Spherical and Toroidal) with some Applications

في هذه الرسالة، ندرس حل معادلة لابلاس في بعض الإحداثيات المنحية مع بعض تطبيقاتهم. أولا سنقوم بالتركيز على نظام الإحداثيات المنحنية وعلى إيجاد معامل القياس الذي يعتبر مهم في كتابة معادلة لابلاس لآي نظام إحداثي منحني. تم تناولنا الإحداثيات الاسطوانية والكروية وحل معادلة لابلاس في هذه الإحداثيات بالإضافة إلى تطبيق ديرشليت لنطاق محدود ب (اسطوانة أو كرة). تم اتجهنا إلى حل معادلة لابلاس في نظام الإحداثيات الحلقية حيث درست باستفاضة، بالإضافة إلى الإحداثيات ذو القطبين وعلاقتها بالإحداثيات الحلقية، ومسالة ديريشليت الداخلية والخارجية. Abstract In this thesis, we study the solution of Laplace's equation in some curvilinear coordinates systems with some applications. We will concentrate first on curvilinear coordinates and find scale factor which is important in writing the Laplace's equation for any curvilinear coordinate system. And we presented the (cylindrical, spherical) coordinates system and the solution of Laplace's equation in these coordinates, as well as Dirichlet application with closed domain (cylinder, sphere). Finally, solutions of Laplace's equation in toroidal coordinates system were studied in details, also we studied the bipolar coordinates system, and its relation with toroidal coordinates, as well as Dirichlet problem for a domain bounded by a toroidal surface
صالحة ونيس بحور (2015)
Publisher's website

Matrices as Derivatives in Three Dimensional Real Algebra

يقصد بهذه الدراسة تعريف وتقصي ثلاثة مفاهيم للاشتقاق في جبر حقيقي ثلاثي الأبعاد. يمكن استعمال فعل نصف الزمرة الضربية للمصفوفات الحقيقية على جبر، لتعريف مشتقين هما مصفوفتان يرمز لهما بالرمزين . [-derivative و F- derivative] ويعتبر الأخير الأقوى وبديل للمفهوم الثالث للمشتق كعنصر في الجبر. وقد قدمت طرق إيجاد كل مشتق من بديله، وتم إعطاء عدة نتائج وتوضيحات تظهر الجوانب العلمية والحسابية. Abstract By defining an action of the unital multiplicative semi group of matrices on a three dimensional real algebra, the concepts of F- derivative and -derivative are introduced for a function with domain and range in .In each concept the derivative is a matrix; however a third concept of derivative is defined as an element of the algebra. Several results, relations, illustrations are given.
فاطمة بشير ارحومة (2014)
Publisher's website

On The Polynomial solutions of the classicalequations of Hermite, Legendre, and Chebyshev

المعادلات التفاضلية الكلاسيكية لهيرميت ولجاندر وتشيبي شيف مشهورة بحلولهم المتعددة الحدود تلك الحدوديات تساهم في حلول بعض المسائل في الرياضيات التطبيقية والفيزياء والهندسة .وحيث أن تلك المعادلات من الرتبة الثانية فإن لكل منها أيضاً حل ثاني مستقل خطيا ليس متعددة حدود هذه الحلول غالباً لا نستطيع وضعها في صورة دوال أولية بمفردها في هذا البحث سوف ندرس المعادلات الكلاسيكية لهيرميت ولجاندر وتشيبي شيف عندما يكون لهاالحد() على الطرف الأيمن والذي يعرف أحياناً بالحد المُجْبِر في المعادلة وسوف نثبت بأنه لكل معادلة وباختيار شرط ابتدائي محدد يكون ضروري وكافي نضمن الحل المتعدد الحدود . عندما يكون هذا الشرط الأبتدائي محدد فإن الشكل التام المضبوط للحل في صورة متعددات حدود يكون موجوداً. Abstract The classical differential equations of Hermite, Legendre, and Chebyshev are well known for their polynomial solutions. These polynomials occur in the solutions to numerous problems in applied mathematics, physics and engineering. However, since these equations are of second order, they also have second linearly independent solutions that are not polynomials. These solutions usually cannot be expressed in terms of elementary functions alone. In this thesis, the classical differential equations of Hermite, Legendre, and Chebyshev are studied when they have a forcing term on the right-hand side. It was shown that for each equation, choosing a certain initial condition is a necessary and sufficient condition for ensuring a polynomial solution. Once this initial condition is determined, the exact form of the polynomial solution is presented.
نجاة علي أحمد الجلالي (2014)
Publisher's website