Abstract
During the last years there has been an increasing consciousness of the environmental problems, created by the use of fossil fuels in electrical power generation consumed by converting cooling systems. In addition, the use of common working fluids (refrigerants), with their ozonedepleting and global warming potential, has become a serious environmental problem. This underlines the need to implement advanced, new concepts in building air-conditioning. The most common global type of thermally driven technology to produce chilled water is absorption cooling. For air-conditioning applications, absorption systems commonly use the water/lithium bromide or ammonia/water as working pair of fluids. The objective of this study is to establish a fundamental basis for further research and development within the field of solar cooling. In this study, an overview of possible systems for solar powered refrigeration and airconditioning systems will be presented. The concept of the ‘Solar Cooling Path’ is introduced, including a discussion of the energy source to the collector. Brief information and comparisons of different absorption refrigeration cycles are also presented. A solar-driven absorption refrigeration system has been selected as a case study for a further detailed investigation. A low temperature heat source can be used to drive the absorption refrigeration cycle, making the system suitable for integration with solar thermal collector. The Transient System Simulation program (TRNSYS) and Engineering Equation Solver (EES) simulation tools are used to model and analyze the performance of a solar-driven absorption refrigeration system. Analysis of the absorption cycle system is initiated by steady-state analysis. A modeling of single effect water/lithium bromide absorption cycle was constructed to study the effect of the operating variable on the system performance and to determine the optimum operating conditions for the absorption cycle. This model was developed by Engineering Equations Solver program (EES). In practice, the ambient conditions and solar radiation are not constant. Therefore, a dynamic analysis is useful for determining the characteristics of the system during the entire year, and dimensioning the important components of the solar collector subsystem, such as storage tanks and collector area. The overall solar absorption cooling system has been simulated by the TRNSYS program with a typical meteorological year file containing the weather parameters for the capital of Libya, Tripoli. Finally, a parametric study was carried out to investigate the influence of key parameters on the overall system performance of solar absorption cooling system and hence to improve and optimize the system design. Results from the parametric optimization indicated that with an area of 130m2 of flat plate collectors with an inclination of 32° and 3.5m3 of storage tank is achieved to cover the demand of air conditioning of a 35kW absorption chiller.
إبراهيم محمد علي الطويري (2011)