faculty of Engineering

More ...

About faculty of Engineering

Faculty of Engineering

The Faculty of Engineering, University of Tripoli, was established in 1961 in the name of the “Faculty of Higher Technical Studies” within the program of scientific and technical cooperation with the United Nations Educational, Scientific and Cultural Organization UNESCO. Thus, this makes it the first engineering college in Libya. In 1967, it was included to the University of Libya under the name of the Faculty of Engineering. In 1972, the Faculty of Petroleum Engineering established. However, it then was then included to the Faculty of Engineering, and elements from the Faculty of Science, University of Tripoli in 1973. In 1978, the Faculty of Nuclear and Electronic Engineering was created. In 1985 the Faculty of Petroleum Engineering was merged with the Faculty of Engineering within the framework of linking the colleges and higher institutes with engineering research centers. The Faculty of Nuclear and Electronic Engineering was then added to the Faculty of Engineering in 1988.

 

The Faculty of Engineering has a pioneering role in the scientific career, its role is increasing significantly in line with the technical development, especially in the fields of communication and informatics engineering. In addition, it also following new developments with their applications in the engineering sector, along with permanent and renewable energy, modern methods of construction and architecture and their environmental impacts. In response to this development, the Faculty of Engineering undertook changes in its educational curricula and academic structure by growing from a faculty with four departments since its inception to become a group of thirteen departments in order to meet the desires and requirements of the Libyan society and to achieve its goals and aspirations for progress. Accordingly, the study system in the Faculty has evolved from the academic year system to term-based system.

 

The expansion of the academic fields in the Faculty undoubtedly requires expansions in the facilities that accommodate the increasing numbers of students which have reached twelve thousand in recent years. This development will include halls, laboratories and other advanced capabilities and equipment, including computers and research measuring devices.

 

The Faculties consists of the following departments: Department of Civil Engineering - Department of Mechanical and Industrial Engineering - Department of Electrical and Electronic Engineering - Department of Computer Engineering - Department of Architecture and Urban Planning - Department of Petroleum Engineering - Department of Chemical Engineering - Department of Geological Engineering - Department of Mining Engineering - Department of Aeronautical Engineering - Department of Naval Engineering and Ship Architecture - Department of Nuclear Engineering - Department of Materials and Mineral Engineering - Department of Engineering Management "Postgraduate studies".

 

These departments carry out their specialized scientific tasks in accordance with the relevant laws, regulations and decisions, which include in their entirety:

 

-          Academic supervision of students in terms of registration, teaching and evaluation.

-          Follow-up of research, authoring and translation programs.

-          Preparing and holding specialized scientific conferences and seminars.

-          Preparing and reviewing academic curricula to keep pace with scientific progress and the needs of society.

-          Providing specialized scientific advice to productive and service institutions in society.

-          Conducting scientific and practical studies in the field of research to solve relevant community problems.

-          Contributing to developing plans and proposals for managing the educational process in the Faculty and departments.

Facts about faculty of Engineering

We are proud of what we offer to the world and the community

278

Publications

326

Academic Staff

9723

Students

558

Graduates

Programs

No Translation Found
Major No Translation Found

No Translation Found...

Details
Major

...

Details
Major

...

Details

Who works at the faculty of Engineering

faculty of Engineering has more than 326 academic staff members

staff photo

Prof.Dr. ALMABRUK ABDULGADER ALI SANOUSSI

المبروك السنوسي هو احد اعضاء هيئة التدريس بقسم الهندسة المدنية بكلية الهندسة. يعمل السيد المبروك السنوسي بجامعة طرابلس كـأستاذ منذ 2017-09-18 وله العديد من المنشورات العلمية في مجال تخصصه

Publications

Some of publications in faculty of Engineering

Investigation into the Decision Making Processes within Some Operating Oil & Gas Companies

Making decisions is considered as the key role in achieving the desired goals within any organization. Moreover, making decisions in oil & gas industry is becoming a key factor for improving the work performance throughout practicing the most effective tools and techniques. The main purpose of this paper is to identify how individuals making their decisions within operating oil and gas companies. The required data for this paper were acquired by conducting several interviews with decision makers, and a questionnaire survey was also developed, besides reviewing the related literatures. Decision making processes in Libyan oil & gas operating companies were being investigated. The main findings show that over half of participants always consider safety, security and uncertainty issues when making their decisions, meaning that, it is a good indication of taking precautions when making decisions. Additionally, the majority of participants always double check their information resources, which is also a good indication of increasing the quality decisions and enhancing the work performance. Based on the findings, a number of recommendations were proposed for improving the processes of making proper and effective decisions within this business area arabic 13 English 77
Rajab HOKOMA, Hanan Zawam Aburas(1-2019)
Publisher's website

Space-Time Block Coded Spatial Modulation Aided mmWave MIMO with Hybrid Precoding

In this paper, a combination of Space-Time Block Coded Spatial Modulation with Hybrid Analog-Digital Beamforming (STBC-SM-HBF) for Millimeter-wave (mmWave) communications is proposed in order to take advantage of the merits of Spatial Modulation (SM), Space-Time Block Codes (STBC), Analog Beamforming (ABF), and digital precoding techniques while avoiding their drawbacks. This proposed system benefits from the multiplexing gain of SM, from the transmit diversity gain of STBC, and from the Signal-to-Noise Ratio (SNR) gain of the beamformer. The simulation results demonstrate that the Zero Forcing (ZF) and the Minimum Mean Square Error (MMSE) precoded STBC-SM systems have better Bit Error Rate (BER) performance than the precoded SM systems. Moreover, the precoded SM shows a performance degradation compared to STBC-SM system. Furthermore, the BER is significantly improved by employing an array of ABF. In addition, it is demonstrated that a minimum of 2 antenna elements in the proposed scheme of STBC-SM-HBF are required to obtain better BER than that of the conventional SM and STBC-SM systems under the same spectral efficiency of 2 bits/s/Hz.
Taissir Y. Elganimi, Ali A. Elghariani(5-2018)
Publisher's website

Role of Spatial Variability in the Service Life Prediction of RC Bridges Affected by Corrosion

Estimating the service life of Reinforced Concrete (RC) bridge structures located in corrosive marine environments of a great importance to their owners/engineers. Traditionally, bridge owners/engineers relied more on subjective engineering judgment, e.g. visual inspection, in their estimation approach. However, because financial resources are often limited, rational calculation methods of estimation are needed to aid in making reliable and more accurate predictions of the service life of RC structures. This is in order to direct funds to bridges found to be the most critical. Criticality of the structure can be considered either from the Structural Capacity (i.e. Ultimate Limit State) or from Serviceability viewpoint whichever is adopted. This paper considers the service life of the structure only from the Structural Capacity viewpoint. Considering the great variability associated with the parameters involved in the estimation process, the probabilistic approach is most suited. The probabilistic modelling adopted here used Monte Carlo simulation technique to estimate the Reliability (i.e. Probability of Failure) of the structure under consideration. In this paper the authors used their own experimental data for the Correlation Length (CL) for the most important deterioration parameters. The CL is a parameter of the Correlation Function (CF) by which the spatial fluctuation of a certain deterioration parameter is described. The CL data used here were produced by analyzing 45 chloride profiles obtained from a 30 years old RC bridge located in a marine environment. The service life of the structure was predicted in terms of the load carrying capacity of an RC bridge beam girder. The analysis showed that the influence of SV is only evident if the reliability of the structure is governed by the Flexure failure rather than by the Shear failure. arabic 14 English 80
Omran Mohamed Saleh Kenshel(2-2021)
Publisher's website

Journals

Journals published by faculty of Engineering

faculty of Engineering in photos

faculty of Engineering Albums