faculty of Engineering

More ...

About faculty of Engineering

Faculty of Engineering

The Faculty of Engineering, University of Tripoli, was established in 1961 in the name of the “Faculty of Higher Technical Studies” within the program of scientific and technical cooperation with the United Nations Educational, Scientific and Cultural Organization UNESCO. Thus, this makes it the first engineering college in Libya. In 1967, it was included to the University of Libya under the name of the Faculty of Engineering. In 1972, the Faculty of Petroleum Engineering established. However, it then was then included to the Faculty of Engineering, and elements from the Faculty of Science, University of Tripoli in 1973. In 1978, the Faculty of Nuclear and Electronic Engineering was created. In 1985 the Faculty of Petroleum Engineering was merged with the Faculty of Engineering within the framework of linking the colleges and higher institutes with engineering research centers. The Faculty of Nuclear and Electronic Engineering was then added to the Faculty of Engineering in 1988.

 

The Faculty of Engineering has a pioneering role in the scientific career, its role is increasing significantly in line with the technical development, especially in the fields of communication and informatics engineering. In addition, it also following new developments with their applications in the engineering sector, along with permanent and renewable energy, modern methods of construction and architecture and their environmental impacts. In response to this development, the Faculty of Engineering undertook changes in its educational curricula and academic structure by growing from a faculty with four departments since its inception to become a group of thirteen departments in order to meet the desires and requirements of the Libyan society and to achieve its goals and aspirations for progress. Accordingly, the study system in the Faculty has evolved from the academic year system to term-based system.

 

The expansion of the academic fields in the Faculty undoubtedly requires expansions in the facilities that accommodate the increasing numbers of students which have reached twelve thousand in recent years. This development will include halls, laboratories and other advanced capabilities and equipment, including computers and research measuring devices.

 

The Faculties consists of the following departments: Department of Civil Engineering - Department of Mechanical and Industrial Engineering - Department of Electrical and Electronic Engineering - Department of Computer Engineering - Department of Architecture and Urban Planning - Department of Petroleum Engineering - Department of Chemical Engineering - Department of Geological Engineering - Department of Mining Engineering - Department of Aeronautical Engineering - Department of Naval Engineering and Ship Architecture - Department of Nuclear Engineering - Department of Materials and Mineral Engineering - Department of Engineering Management "Postgraduate studies".

 

These departments carry out their specialized scientific tasks in accordance with the relevant laws, regulations and decisions, which include in their entirety:

 

-          Academic supervision of students in terms of registration, teaching and evaluation.

-          Follow-up of research, authoring and translation programs.

-          Preparing and holding specialized scientific conferences and seminars.

-          Preparing and reviewing academic curricula to keep pace with scientific progress and the needs of society.

-          Providing specialized scientific advice to productive and service institutions in society.

-          Conducting scientific and practical studies in the field of research to solve relevant community problems.

-          Contributing to developing plans and proposals for managing the educational process in the Faculty and departments.

Facts about faculty of Engineering

We are proud of what we offer to the world and the community

278

Publications

326

Academic Staff

9723

Students

558

Graduates

Programs

Major

...

Details
No Translation Found
Major No Translation Found

No Translation Found...

Details
Bachelor of Science
Major Petroleum Engineering

>>>...

Details

Who works at the faculty of Engineering

faculty of Engineering has more than 326 academic staff members

staff photo

Prof.Dr. Misbah Saleh Mohammed Mahfoodh

مصباح محفوظ هو احد اعضاء هيئة التدريس بقسم هندسة مواد ومعادن بكلية الهندسة. يعمل السيد مصباح محفوظ بجامعة طرابلس كـأستاذ منذ وله العديد من المنشورات العلمية في مجال تخصصه

Publications

Some of publications in faculty of Engineering

Effects of Finny-shaped Absorber Surface on Basin-solar Still Behavior

Abstract For this study, two identical single-effect of single basin solar stills are designed, fabricated, tested, and evaluated, where one of them is employed alone which is referred to as “passive still”, while the other is coupled to a flat plate solar collector introducing what so called the active still. Both are installed at the same site in Tripoli-Libya and they are oriented due to south. Measurement of various temperatures, solar intensities, humidity, wind speed and distillated water production are taken each hour for several days of August under various operating conditions. Two operational modes are considered; each of the passive and active stills is operating for the whole day. These tests were performed using seawater and water basin different depths. The water production of the active still is reported to be 6.6 L/m2.day which is higher than that of the passive still by 56 per cent approximately. The maximum daily efficiency is calculated to be 24 per cent approximately for the active still system while it is 14 per cent approximately for the passive still. Yet, the still thermal performance seems to have a complex function of geometrical, constructional, and operational conditions, site characteristics and layout details.
صالح أحمد سرابيط (2010)
Publisher's website

Role of Spatial Variability in the Service Life Prediction of RC Bridges Affected by Corrosion

Estimating the service life of Reinforced Concrete (RC) bridge structures located in corrosive marine environments of a great importance to their owners/engineers. Traditionally, bridge owners/engineers relied more on subjective engineering judgment, e.g. visual inspection, in their estimation approach. However, because financial resources are often limited, rational calculation methods of estimation are needed to aid in making reliable and more accurate predictions of the service life of RC structures. This is in order to direct funds to bridges found to be the most critical. Criticality of the structure can be considered either from the Structural Capacity (i.e. Ultimate Limit State) or from Serviceability viewpoint whichever is adopted. This paper considers the service life of the structure only from the Structural Capacity viewpoint. Considering the great variability associated with the parameters involved in the estimation process, the probabilistic approach is most suited. The probabilistic modelling adopted here used Monte Carlo simulation technique to estimate the Reliability (i.e. Probability of Failure) of the structure under consideration. In this paper the authors used their own experimental data for the Correlation Length (CL) for the most important deterioration parameters. The CL is a parameter of the Correlation Function (CF) by which the spatial fluctuation of a certain deterioration parameter is described. The CL data used here were produced by analyzing 45 chloride profiles obtained from a 30 years old RC bridge located in a marine environment. The service life of the structure was predicted in terms of the load carrying capacity of an RC bridge beam girder. The analysis showed that the influence of SV is only evident if the reliability of the structure is governed by the Flexure failure rather than by the Shear failure. arabic 14 English 80
Omran Mohamed Saleh Kenshel(2-2021)
Publisher's website

Optimizing thermal insulation of external building walls in different climate zones in Libya

An efficient way to reduce the energy required for conditioning buildings and therefore to reduce CO2 emission is the use of proper thermal insulation in buildings' external walls. This measure requires data from metrological stations that can be used in the optimization of the thermal insulation. The main objectives of this study are to construct thermal climatic zones for Libya and to specify the optimum insulation thickness for external walls for the different zones. This work is comprehensive as the metrological data from all existing 33 weather stations has been collected and used for identifying thermal zones. For the optimization of the construction of external walls, the most commonly used local wall structures are investigated: hollow concrete block, limestone block and hollow brick. In addition, four thermal insulation materials: extruded polystyrene, expanded polystyrene, rock wool and foamed polyurethane are used with every wall type. Optimum insulation thickness, energy savings, energy cost and payback periods were estimated for the 33 locations using life cycle cost analysis. A map is constructed for the thermal zones based on degree-day values for the entire country. The results show that limestone blocks with expanded polystyrene insulation form the optimum wall construction as it provides the minimum total cost for all locations. Depending on the Degree-day values, the optimum insulation thickness varies between 5.4 and 15.3 cm across the country with energy saving varies between 28 and 178 $/m2. Using the optimum thickness, the average CO2 emissions can potentially be reduced by about 85%. Finally, a contour map represents the optimum thickness of expanded polystyrene is presented in this work. arabic 12 English 80
Samah Khlifa Otman Alghoul, (1-2021)
Publisher's website

Journals

Journals published by faculty of Engineering

faculty of Engineering in photos

faculty of Engineering Albums